Cargando…

Development of a 3D Relative Motion Method for Human–Robot Interaction Assessment

Exoskeletons have been assessed by qualitative and quantitative features known as performance indicators. Within these, the ergonomic indicators have been isolated, creating a lack of methodologies to analyze and assess physical interfaces. In this sense, this work presents a three-dimensional relat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballen-Moreno, Felipe, Bautista, Margarita, Provot, Thomas, Bourgain, Maxime, Cifuentes, Carlos A., Múnera, Marcela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952123/
https://www.ncbi.nlm.nih.gov/pubmed/35336593
http://dx.doi.org/10.3390/s22062411
Descripción
Sumario:Exoskeletons have been assessed by qualitative and quantitative features known as performance indicators. Within these, the ergonomic indicators have been isolated, creating a lack of methodologies to analyze and assess physical interfaces. In this sense, this work presents a three-dimensional relative motion assessment method. This method quantifies the difference of orientation between the user’s limb and the exoskeleton link, providing a deeper understanding of the Human–Robot interaction. To this end, the AGoRA exoskeleton was configured in a resistive mode and assessed using an optoelectronic system. The interaction quantified a difference of orientation considerably at a maximum value of 41.1 degrees along the sagittal plane. It extended the understanding of the Human–Robot Interaction throughout the three principal human planes. Furthermore, the proposed method establishes a performance indicator of the physical interfaces of an exoskeleton.