Cargando…
mRNA Lipoplexes with Cationic and Ionizable α-Amino-lipophosphonates: Membrane Fusion, Transfection, mRNA Translation and Conformation
Cationic liposomes are attractive carriers for mRNA delivery. Here, mRNA lipoplexes (LX) were prepared with the cationic lipids α-aminolipophosphonate (3b) or imidazolium lipophosphoramidate (2) associated with various α-aminolipophosphonates co-lipids comprising protonable groups (imidazole or pyri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952827/ https://www.ncbi.nlm.nih.gov/pubmed/35335957 http://dx.doi.org/10.3390/pharmaceutics14030581 |
Sumario: | Cationic liposomes are attractive carriers for mRNA delivery. Here, mRNA lipoplexes (LX) were prepared with the cationic lipids α-aminolipophosphonate (3b) or imidazolium lipophosphoramidate (2) associated with various α-aminolipophosphonates co-lipids comprising protonable groups (imidazole or pyridine) and DOPE. Physicochemical parameters of liposomes and their membrane fusion activity were measured. LXs comprising either 3b- or 2- allowed transfection of ~25% and 40% of dendritic cells with low cytotoxicity, respectively; the efficiency increased up to 80% when 2 was combined with the imidazole-based co-lipid 1. The transfections were high with 3b/1, 3b/DOPE, 2/1 and 2/DOPE LXs. We observed that the transfection level was not well correlated with the acid-mediated membrane fusion activity of liposomes supposed to destabilize endosomes. The mRNA release from LXs and its translation capacity after release were studied for the most efficient LXs. The results showed that the more mRNA was condensed, the poorer the translation efficiency after release was. In contrast to DNA, circular dichroism performed on mRNA complexed with 2/DOPE revealed the presence of denatured mRNA in LXs explaining this lack of translation efficiency. This is an important parameter that should be stressed for the preparation of mRNA LXs with a conserved mRNA translation activity. |
---|