Cargando…

Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength

In this study, whole-genome resequencing of two native probiotic Lactiplantibacillus plantarum strains—UTNGt21A and UTNGt2—was assessed in order to identify variants and perform annotation of genes involved in bacterial adaptability to different stressors, as well as their antimicrobial strength. A...

Descripción completa

Detalles Bibliográficos
Autor principal: Tenea, Gabriela N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953754/
https://www.ncbi.nlm.nih.gov/pubmed/35327997
http://dx.doi.org/10.3390/genes13030443
_version_ 1784675928119443456
author Tenea, Gabriela N.
author_facet Tenea, Gabriela N.
author_sort Tenea, Gabriela N.
collection PubMed
description In this study, whole-genome resequencing of two native probiotic Lactiplantibacillus plantarum strains—UTNGt21A and UTNGt2—was assessed in order to identify variants and perform annotation of genes involved in bacterial adaptability to different stressors, as well as their antimicrobial strength. A total of 21,906 single-nucleotide polymorphisms (SNPs) were detected in UTNGt21A, while 17,610 were disclosed in the UTNGt2 genome. The comparative genomic analysis revealed a greater number of deletions, transversions, and transitions within the UTNGt21A genome, while a small difference in the number of insertions was detected between the strains. A divergent number of types of variant annotations were detected in both strains, and categorized in terms of low, moderate, and high modifier impact on the protein effectiveness. Although both native strains shared common specific genes involved in the stress response to the gastrointestinal environment, which may qualify as a putative probiotic (bile salt, acid, temperature, osmotic stress), they were different in their antimicrobial gene cluster organization, with UTNGt21A displaying a complex bacteriocin gene arrangement and dissimilar gene variants that might alter their defense mechanisms and overall inhibitory capacity. The genome comparison revealed 34 and 9 genomic islands (GIs) in the UTNGt21A and UTNGt2 genomes, respectively, with the overrepresentation of genes involved in defense mechanisms and carbohydrate utilization. In addition, pan-genome analysis disclosed the presence of various strain-specific genes (shell genes), suggesting a high genome variation between strains. This genome analysis illustrates that the bacteriocin signature and gene variants reflect a niche-inherent pattern. These extensive genomic datasets will guide us to understand the potential benefits of the native strains and their utility in the food or pharmaceutical sectors.
format Online
Article
Text
id pubmed-8953754
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89537542022-03-26 Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength Tenea, Gabriela N. Genes (Basel) Article In this study, whole-genome resequencing of two native probiotic Lactiplantibacillus plantarum strains—UTNGt21A and UTNGt2—was assessed in order to identify variants and perform annotation of genes involved in bacterial adaptability to different stressors, as well as their antimicrobial strength. A total of 21,906 single-nucleotide polymorphisms (SNPs) were detected in UTNGt21A, while 17,610 were disclosed in the UTNGt2 genome. The comparative genomic analysis revealed a greater number of deletions, transversions, and transitions within the UTNGt21A genome, while a small difference in the number of insertions was detected between the strains. A divergent number of types of variant annotations were detected in both strains, and categorized in terms of low, moderate, and high modifier impact on the protein effectiveness. Although both native strains shared common specific genes involved in the stress response to the gastrointestinal environment, which may qualify as a putative probiotic (bile salt, acid, temperature, osmotic stress), they were different in their antimicrobial gene cluster organization, with UTNGt21A displaying a complex bacteriocin gene arrangement and dissimilar gene variants that might alter their defense mechanisms and overall inhibitory capacity. The genome comparison revealed 34 and 9 genomic islands (GIs) in the UTNGt21A and UTNGt2 genomes, respectively, with the overrepresentation of genes involved in defense mechanisms and carbohydrate utilization. In addition, pan-genome analysis disclosed the presence of various strain-specific genes (shell genes), suggesting a high genome variation between strains. This genome analysis illustrates that the bacteriocin signature and gene variants reflect a niche-inherent pattern. These extensive genomic datasets will guide us to understand the potential benefits of the native strains and their utility in the food or pharmaceutical sectors. MDPI 2022-02-28 /pmc/articles/PMC8953754/ /pubmed/35327997 http://dx.doi.org/10.3390/genes13030443 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tenea, Gabriela N.
Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title_full Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title_fullStr Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title_full_unstemmed Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title_short Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength
title_sort decoding the gene variants of two native probiotic lactiplantibacillus plantarum strains through whole-genome resequencing: insights into bacterial adaptability to stressors and antimicrobial strength
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953754/
https://www.ncbi.nlm.nih.gov/pubmed/35327997
http://dx.doi.org/10.3390/genes13030443
work_keys_str_mv AT teneagabrielan decodingthegenevariantsoftwonativeprobioticlactiplantibacillusplantarumstrainsthroughwholegenomeresequencinginsightsintobacterialadaptabilitytostressorsandantimicrobialstrength