Cargando…
AIM5LA: A Latency-Aware Deep Reinforcement Learning-Based Autonomous Intersection Management System for 5G Communication Networks
The future of Autonomous Vehicles (AVs) will experience a breakthrough when collective intelligence is employed through decentralized cooperative systems. A system capable of controlling all AVs crossing urban intersections, considering the state of all vehicles and users, will be able to improve ve...
Autores principales: | Antonio, Guillen-Perez, Maria-Dolores, Cano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953979/ https://www.ncbi.nlm.nih.gov/pubmed/35336388 http://dx.doi.org/10.3390/s22062217 |
Ejemplares similares
-
Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator
por: Gutiérrez-Moreno, Rodrigo, et al.
Publicado: (2022) -
Straggler-Aware Distributed Learning: Communication–Computation Latency Trade-Off
por: Ozfatura, Emre, et al.
Publicado: (2020) -
Intersection management for autonomous vehicles with vehicle-to-infrastructure communication
por: Li, Yuying, et al.
Publicado: (2020) -
Reinforcement Learning for Energy Optimization with 5G Communications in Vehicular Social Networks
por: Park, Hyebin, et al.
Publicado: (2020) -
Human-like Decision Making for Autonomous Vehicles at the Intersection Using Inverse Reinforcement Learning
por: Wu, Zheng, et al.
Publicado: (2022)