Cargando…
Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization
Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956882/ https://www.ncbi.nlm.nih.gov/pubmed/35334248 http://dx.doi.org/10.1016/j.redox.2022.102297 |
_version_ | 1784676650425778176 |
---|---|
author | Wang, Guoqing Li, Xingran Li, Na Wang, Xiaotang He, Siyuan Li, Wanqian Fan, Wei Li, Ruonan Liu, Jiangyi Hou, Shengping |
author_facet | Wang, Guoqing Li, Xingran Li, Na Wang, Xiaotang He, Siyuan Li, Wanqian Fan, Wei Li, Ruonan Liu, Jiangyi Hou, Shengping |
author_sort | Wang, Guoqing |
collection | PubMed |
description | Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive. Our study indicated that ICA alleviated intraocular inflammation in vivo. Further results showed the proinflammatory M1 microglia could be transferred to anti-inflammatory M2 microglia by ICA in the retina and HMC3 cells. However, the direct pharmacological target of ICA is unknown, to this end, proteome microarrays and molecular simulations were used to identify the molecular targets of ICA. Data showed that ICA binds to peroxiredoxin-3 (PRDX3), increasing PRDX3 protein expression in both a time- and a concentration-dependent manner and promoting the subsequent elimination of H(2)O(2). In addition, GPX4/SLC7A11/ACSL4 pathways were activated accompanied by PRDX3 activation. Functional tests demonstrated that ICA-derived protection is afforded through targeting PRDX3. First, ICA-shifted microglial M1/M2 phenotypic polarization was no longer detected by blocking PRDX3 both in vivo and in vitro. Next, ICA-activated GPX4/SLC7A11/ACSL4 pathways and downregulated H(2)O(2) production were also reversed via inhibiting PRDX3 both in vivo and in vitro. Finally, ICA-elicited positive effects on intraocular inflammation were eliminated in PRDX3-deficient retina from experimental autoimmune uveitis (EAU) mice. Taking together, ICA-derived PRDX3 activation has therapeutic potential for uveitis, which might be associated with modulating microglial M1/M2 phenotypic polarization. |
format | Online Article Text |
id | pubmed-8956882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-89568822022-03-27 Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization Wang, Guoqing Li, Xingran Li, Na Wang, Xiaotang He, Siyuan Li, Wanqian Fan, Wei Li, Ruonan Liu, Jiangyi Hou, Shengping Redox Biol Research Paper Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive. Our study indicated that ICA alleviated intraocular inflammation in vivo. Further results showed the proinflammatory M1 microglia could be transferred to anti-inflammatory M2 microglia by ICA in the retina and HMC3 cells. However, the direct pharmacological target of ICA is unknown, to this end, proteome microarrays and molecular simulations were used to identify the molecular targets of ICA. Data showed that ICA binds to peroxiredoxin-3 (PRDX3), increasing PRDX3 protein expression in both a time- and a concentration-dependent manner and promoting the subsequent elimination of H(2)O(2). In addition, GPX4/SLC7A11/ACSL4 pathways were activated accompanied by PRDX3 activation. Functional tests demonstrated that ICA-derived protection is afforded through targeting PRDX3. First, ICA-shifted microglial M1/M2 phenotypic polarization was no longer detected by blocking PRDX3 both in vivo and in vitro. Next, ICA-activated GPX4/SLC7A11/ACSL4 pathways and downregulated H(2)O(2) production were also reversed via inhibiting PRDX3 both in vivo and in vitro. Finally, ICA-elicited positive effects on intraocular inflammation were eliminated in PRDX3-deficient retina from experimental autoimmune uveitis (EAU) mice. Taking together, ICA-derived PRDX3 activation has therapeutic potential for uveitis, which might be associated with modulating microglial M1/M2 phenotypic polarization. Elsevier 2022-03-18 /pmc/articles/PMC8956882/ /pubmed/35334248 http://dx.doi.org/10.1016/j.redox.2022.102297 Text en © 2022 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Wang, Guoqing Li, Xingran Li, Na Wang, Xiaotang He, Siyuan Li, Wanqian Fan, Wei Li, Ruonan Liu, Jiangyi Hou, Shengping Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title | Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title_full | Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title_fullStr | Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title_full_unstemmed | Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title_short | Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization |
title_sort | icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia m1/m2 phenotypic polarization |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956882/ https://www.ncbi.nlm.nih.gov/pubmed/35334248 http://dx.doi.org/10.1016/j.redox.2022.102297 |
work_keys_str_mv | AT wangguoqing icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT lixingran icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT lina icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT wangxiaotang icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT hesiyuan icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT liwanqian icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT fanwei icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT liruonan icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT liujiangyi icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization AT houshengping icariinalleviatesuveitisbytargetingperoxiredoxin3tomodulateretinalmicrogliam1m2phenotypicpolarization |