Cargando…
A series of xanthenes inhibiting Rad6 function and Rad6-Rad18 interaction in the PCNA ubiquitination cascade
Ubiquitination of proliferating cell nuclear antigen (PCNA) triggers pathways of DNA damage tolerance, including mutagenic translesion DNA synthesis, and comprises a cascade of reactions involving the E1 ubiquitin-activating enzyme Uba1, the E2 ubiquitin-conjugating enzyme Rad6, and the E3 ubiquitin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958325/ https://www.ncbi.nlm.nih.gov/pubmed/35355521 http://dx.doi.org/10.1016/j.isci.2022.104053 |
Sumario: | Ubiquitination of proliferating cell nuclear antigen (PCNA) triggers pathways of DNA damage tolerance, including mutagenic translesion DNA synthesis, and comprises a cascade of reactions involving the E1 ubiquitin-activating enzyme Uba1, the E2 ubiquitin-conjugating enzyme Rad6, and the E3 ubiquitin ligase Rad18. We report here the discovery of a series of xanthenes that inhibit PCNA ubiquitination, Rad6∼ubiquitin thioester formation, and the Rad6–Rad18 interaction. Structure-activity relationship experiments across multiple assays reveal chemical and structural features important for different activities along the pathway to PCNA ubiquitination. The compounds that inhibit these processes are all a subset of the xanthen-3-ones we tested. These small molecules thus represent first-in-class probes of Rad6 function and the association of Rad6 and Rad18, the latter being a new inhibitory activity discovered for a small molecule, in the PCNA ubiquitination cascade and potential therapeutic agents to contain cancer progression. |
---|