Cargando…
Mid-State Kalman Filter for Nonlinear Problems
When tracking very long-range targets, wide-band radars capable of measuring targets with high precision at ranges have severe measurement nonlinearities. The existing nonlinear filtering technology, such as the extended Kalman filter and untracked Kalman filter, will have significant consistency pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963023/ https://www.ncbi.nlm.nih.gov/pubmed/35214203 http://dx.doi.org/10.3390/s22041302 |
_version_ | 1784677903021113344 |
---|---|
author | Liu, Zhengwei Chen, Ying Lu, Yaobing |
author_facet | Liu, Zhengwei Chen, Ying Lu, Yaobing |
author_sort | Liu, Zhengwei |
collection | PubMed |
description | When tracking very long-range targets, wide-band radars capable of measuring targets with high precision at ranges have severe measurement nonlinearities. The existing nonlinear filtering technology, such as the extended Kalman filter and untracked Kalman filter, will have significant consistency problems and loss in tracking accuracy. A novel mid-state Kalman filter is proposed to avoid loss and preserve the filtering consistency. The observed state and its first-order state derivative are selected as the mid-state vector. The update process is transformed into the measurement space to ensure the Gaussian measurement distribution and the linearization of the measurement equation. In order to verify the filter performance in comparison, an iterative formulation of Cramér-Rao Low Bound for the nonlinear system is further derived and given in this paper. Simulation results show that the proposed method has excellent performance of high filtering accuracy and fast convergence by comparing the filter state estimation accuracy and consistency. |
format | Online Article Text |
id | pubmed-8963023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89630232022-03-30 Mid-State Kalman Filter for Nonlinear Problems Liu, Zhengwei Chen, Ying Lu, Yaobing Sensors (Basel) Article When tracking very long-range targets, wide-band radars capable of measuring targets with high precision at ranges have severe measurement nonlinearities. The existing nonlinear filtering technology, such as the extended Kalman filter and untracked Kalman filter, will have significant consistency problems and loss in tracking accuracy. A novel mid-state Kalman filter is proposed to avoid loss and preserve the filtering consistency. The observed state and its first-order state derivative are selected as the mid-state vector. The update process is transformed into the measurement space to ensure the Gaussian measurement distribution and the linearization of the measurement equation. In order to verify the filter performance in comparison, an iterative formulation of Cramér-Rao Low Bound for the nonlinear system is further derived and given in this paper. Simulation results show that the proposed method has excellent performance of high filtering accuracy and fast convergence by comparing the filter state estimation accuracy and consistency. MDPI 2022-02-09 /pmc/articles/PMC8963023/ /pubmed/35214203 http://dx.doi.org/10.3390/s22041302 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Zhengwei Chen, Ying Lu, Yaobing Mid-State Kalman Filter for Nonlinear Problems |
title | Mid-State Kalman Filter for Nonlinear Problems |
title_full | Mid-State Kalman Filter for Nonlinear Problems |
title_fullStr | Mid-State Kalman Filter for Nonlinear Problems |
title_full_unstemmed | Mid-State Kalman Filter for Nonlinear Problems |
title_short | Mid-State Kalman Filter for Nonlinear Problems |
title_sort | mid-state kalman filter for nonlinear problems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963023/ https://www.ncbi.nlm.nih.gov/pubmed/35214203 http://dx.doi.org/10.3390/s22041302 |
work_keys_str_mv | AT liuzhengwei midstatekalmanfilterfornonlinearproblems AT chenying midstatekalmanfilterfornonlinearproblems AT luyaobing midstatekalmanfilterfornonlinearproblems |