Cargando…
A 3D-Printed Self-Learning Three-Linked-Sphere Robot for Autonomous Confined-Space Navigation
Reinforcement learning control methods can impart robots with the ability to discover effective behavior, reducing their modeling and sensing requirements, and enabling their ability to adapt to environmental changes. However, it remains challenging for a robot to achieve navigation in confined and...
Autores principales: | Elder, Brian, Zou, Zonghao, Ghosh, Samannoy, Silverberg, Oliver, Greenwood, Taylor E., Demir, Ebru, Su, Vivian Song-En, Pak, On Shun, Kong, Yong Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963778/ https://www.ncbi.nlm.nih.gov/pubmed/35356413 http://dx.doi.org/10.1002/aisy.202100039 |
Ejemplares similares
-
Topological Navigation for Autonomous Underwater Vehicles in Confined Semi-Structured Environments
por: Rossi, Claudio, et al.
Publicado: (2023) -
Confined Quantum Hard Spheres
por: Contreras, Sergio, et al.
Publicado: (2021) -
Vision Based Autonomous Robot Navigation: Algorithms and Implementations
por: Chatterjee, Amitava, et al.
Publicado: (2013) -
Structured Kernel Subspace Learning for Autonomous Robot Navigation †
por: Kim, Eunwoo, et al.
Publicado: (2018) -
Improving Autonomous Robotic Navigation Using Imitation Learning
por: Cèsar-Tondreau, Brian, et al.
Publicado: (2021)