Cargando…
Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects
Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964130/ https://www.ncbi.nlm.nih.gov/pubmed/35360153 http://dx.doi.org/10.3389/fnins.2022.828646 |
_version_ | 1784678142935302144 |
---|---|
author | Gomes, Ana Karolyne Santos Dantas, Rafaelly Mayara Yokota, Bruno Yukio Silva, André Luiz Teles e Griesi-Oliveira, Karina Passos-Bueno, Maria Rita Sertié, Andréa Laurato |
author_facet | Gomes, Ana Karolyne Santos Dantas, Rafaelly Mayara Yokota, Bruno Yukio Silva, André Luiz Teles e Griesi-Oliveira, Karina Passos-Bueno, Maria Rita Sertié, Andréa Laurato |
author_sort | Gomes, Ana Karolyne Santos |
collection | PubMed |
description | Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior. |
format | Online Article Text |
id | pubmed-8964130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89641302022-03-30 Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects Gomes, Ana Karolyne Santos Dantas, Rafaelly Mayara Yokota, Bruno Yukio Silva, André Luiz Teles e Griesi-Oliveira, Karina Passos-Bueno, Maria Rita Sertié, Andréa Laurato Front Neurosci Neuroscience Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior. Frontiers Media S.A. 2022-03-14 /pmc/articles/PMC8964130/ /pubmed/35360153 http://dx.doi.org/10.3389/fnins.2022.828646 Text en Copyright © 2022 Gomes, Dantas, Yokota, Silva, Griesi-Oliveira, Passos-Bueno and Sertié. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Gomes, Ana Karolyne Santos Dantas, Rafaelly Mayara Yokota, Bruno Yukio Silva, André Luiz Teles e Griesi-Oliveira, Karina Passos-Bueno, Maria Rita Sertié, Andréa Laurato Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title | Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title_full | Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title_fullStr | Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title_full_unstemmed | Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title_short | Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects |
title_sort | interleukin-17a induces neuronal differentiation of induced-pluripotent stem cell-derived neural progenitors from autistic and control subjects |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964130/ https://www.ncbi.nlm.nih.gov/pubmed/35360153 http://dx.doi.org/10.3389/fnins.2022.828646 |
work_keys_str_mv | AT gomesanakarolynesantos interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT dantasrafaellymayara interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT yokotabrunoyukio interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT silvaandreluiztelese interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT griesioliveirakarina interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT passosbuenomariarita interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects AT sertieandrealaurato interleukin17ainducesneuronaldifferentiationofinducedpluripotentstemcellderivedneuralprogenitorsfromautisticandcontrolsubjects |