Cargando…

The mitochondrial anti-apoptotic dependencies of hematologic malignancies: from disease biology to advances in precision medicine

Mitochondria are critical organelles in the regulation of intrinsic apoptosis. As a general feature of blood cancers, different antiapoptotic members of the BCL-2 protein family localize at the outer mitochondrial membrane to sequester variable amounts of proapoptotic activators, and hence protect c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrarini, Isacco, Rigo, Antonella, Visco, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Fondazione Ferrata Storti 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968907/
https://www.ncbi.nlm.nih.gov/pubmed/35045693
http://dx.doi.org/10.3324/haematol.2021.280201
Descripción
Sumario:Mitochondria are critical organelles in the regulation of intrinsic apoptosis. As a general feature of blood cancers, different antiapoptotic members of the BCL-2 protein family localize at the outer mitochondrial membrane to sequester variable amounts of proapoptotic activators, and hence protect cancer cells from death induction. However, the impact of distinct anti-apoptotic members on apoptosis prevention, a concept termed anti-apoptotic dependence, differs remarkably across disease entities. Over the last two decades, several genetic and functional methodologies have been established to uncover the anti-apoptotic dependencies of the majority of blood cancers, inspiring the development of a new class of small molecules called BH3 mimetics. In this review, we highlight the rationale of targeting mitochondrial apoptosis in hematology, and provide a comprehensive map of the anti-apoptotic dependencies that are currently guiding novel therapeutic strategies. Cell-extrinsic and -intrinsic mechanisms conferring resistance to BH3 mimetics are also examined, with insights on potential strategies to overcome them. Finally, we discuss how the field of mitochondrial apoptosis might be complemented with other dimensions of precision medicine for more successful treatment of ‘highly complex’ hematologic malignancies.