Cargando…
SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways
Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974222/ https://www.ncbi.nlm.nih.gov/pubmed/35259059 http://dx.doi.org/10.1080/21655979.2022.2045830 |
_version_ | 1784680219484880896 |
---|---|
author | Pan, Xianfang Fan, Jin Peng, Fang Xiao, Li Yang, Zhiyi |
author_facet | Pan, Xianfang Fan, Jin Peng, Fang Xiao, Li Yang, Zhiyi |
author_sort | Pan, Xianfang |
collection | PubMed |
description | Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway. |
format | Online Article Text |
id | pubmed-8974222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-89742222022-04-02 SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways Pan, Xianfang Fan, Jin Peng, Fang Xiao, Li Yang, Zhiyi Bioengineered Research Paper Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway. Taylor & Francis 2022-03-08 /pmc/articles/PMC8974222/ /pubmed/35259059 http://dx.doi.org/10.1080/21655979.2022.2045830 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Pan, Xianfang Fan, Jin Peng, Fang Xiao, Li Yang, Zhiyi SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title | SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title_full | SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title_fullStr | SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title_full_unstemmed | SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title_short | SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways |
title_sort | set domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced pc12 cell inflammation and oxidative stress by regulating keap1/nrf2/are and nf-κb pathways |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974222/ https://www.ncbi.nlm.nih.gov/pubmed/35259059 http://dx.doi.org/10.1080/21655979.2022.2045830 |
work_keys_str_mv | AT panxianfang setdomaincontaining7promotesoxygenglucosedeprivationreoxygenationinducedpc12cellinflammationandoxidativestressbyregulatingkeap1nrf2areandnfkbpathways AT fanjin setdomaincontaining7promotesoxygenglucosedeprivationreoxygenationinducedpc12cellinflammationandoxidativestressbyregulatingkeap1nrf2areandnfkbpathways AT pengfang setdomaincontaining7promotesoxygenglucosedeprivationreoxygenationinducedpc12cellinflammationandoxidativestressbyregulatingkeap1nrf2areandnfkbpathways AT xiaoli setdomaincontaining7promotesoxygenglucosedeprivationreoxygenationinducedpc12cellinflammationandoxidativestressbyregulatingkeap1nrf2areandnfkbpathways AT yangzhiyi setdomaincontaining7promotesoxygenglucosedeprivationreoxygenationinducedpc12cellinflammationandoxidativestressbyregulatingkeap1nrf2areandnfkbpathways |