Cargando…

CRASH-IT Switch Enables Reversible and Dose-Dependent Control of TCR and CAR T-cell Function

Adoptive transfer of genetically modified or donor-derived T cells can efficiently eradicate human tumors but is also frequently associated with major toxicity. There are several switches that can be used to kill the infused cell pool in the case of major toxicity, but the irreversible nature of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahillioglu, Ali Can, Toebes, Mireille, Apriamashvili, Georgi, Gomez, Raquel, Schumacher, Ton N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974419/
https://www.ncbi.nlm.nih.gov/pubmed/34193461
http://dx.doi.org/10.1158/2326-6066.CIR-21-0095
Descripción
Sumario:Adoptive transfer of genetically modified or donor-derived T cells can efficiently eradicate human tumors but is also frequently associated with major toxicity. There are several switches that can be used to kill the infused cell pool in the case of major toxicity, but the irreversible nature of these suicide switches means that the therapeutic effect is lost when they are used. To address this issue, we engineered a small-molecule responsive genetic safety switch that in the absence of drug robustly blocked cytotoxicity and cytokine expression of primary human T cells. Upon administration of drug, T-cell functions were restored in a reversible and titratable manner. We showed that this T-cell switch was universal, as it could be combined with endogenous or transduced T-cell receptors (TCR), as well as chimeric antigen receptors. The modular nature of the Chemically Regulated - SH2-delivered Inhibitory Tail (CRASH-IT) switch concept, in which inhibitory domains are brought to activating immune receptors in a controlled manner, makes it a versatile platform to regulate the activity of cell products that signal through immunoreceptor tyrosine-based activation motif (ITAM)–containing receptors.