Cargando…

Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy

Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Mingming, Wei, Haoran, Li, Chenze, Zhan, Rui, Liu, Changjie, Gao, Jianing, Yi, Yaodong, Cui, Xiao, Shan, Wenxin, Ji, Liang, Pan, Bing, Cheng, Si, Song, Moshi, Sun, Haipeng, Jiang, Huidi, Cai, Jun, Garcia-Barrio, Minerva T., Chen, Y. Eugene, Meng, Xiangbao, Dong, Erdan, Wang, Dao Wen, Zheng, Lemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976029/
https://www.ncbi.nlm.nih.gov/pubmed/35365608
http://dx.doi.org/10.1038/s41467-022-29060-7
_version_ 1784680479233933312
author Zhao, Mingming
Wei, Haoran
Li, Chenze
Zhan, Rui
Liu, Changjie
Gao, Jianing
Yi, Yaodong
Cui, Xiao
Shan, Wenxin
Ji, Liang
Pan, Bing
Cheng, Si
Song, Moshi
Sun, Haipeng
Jiang, Huidi
Cai, Jun
Garcia-Barrio, Minerva T.
Chen, Y. Eugene
Meng, Xiangbao
Dong, Erdan
Wang, Dao Wen
Zheng, Lemin
author_facet Zhao, Mingming
Wei, Haoran
Li, Chenze
Zhan, Rui
Liu, Changjie
Gao, Jianing
Yi, Yaodong
Cui, Xiao
Shan, Wenxin
Ji, Liang
Pan, Bing
Cheng, Si
Song, Moshi
Sun, Haipeng
Jiang, Huidi
Cai, Jun
Garcia-Barrio, Minerva T.
Chen, Y. Eugene
Meng, Xiangbao
Dong, Erdan
Wang, Dao Wen
Zheng, Lemin
author_sort Zhao, Mingming
collection PubMed
description Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO.
format Online
Article
Text
id pubmed-8976029
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89760292022-04-20 Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy Zhao, Mingming Wei, Haoran Li, Chenze Zhan, Rui Liu, Changjie Gao, Jianing Yi, Yaodong Cui, Xiao Shan, Wenxin Ji, Liang Pan, Bing Cheng, Si Song, Moshi Sun, Haipeng Jiang, Huidi Cai, Jun Garcia-Barrio, Minerva T. Chen, Y. Eugene Meng, Xiangbao Dong, Erdan Wang, Dao Wen Zheng, Lemin Nat Commun Article Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Nature Publishing Group UK 2022-04-01 /pmc/articles/PMC8976029/ /pubmed/35365608 http://dx.doi.org/10.1038/s41467-022-29060-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhao, Mingming
Wei, Haoran
Li, Chenze
Zhan, Rui
Liu, Changjie
Gao, Jianing
Yi, Yaodong
Cui, Xiao
Shan, Wenxin
Ji, Liang
Pan, Bing
Cheng, Si
Song, Moshi
Sun, Haipeng
Jiang, Huidi
Cai, Jun
Garcia-Barrio, Minerva T.
Chen, Y. Eugene
Meng, Xiangbao
Dong, Erdan
Wang, Dao Wen
Zheng, Lemin
Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title_full Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title_fullStr Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title_full_unstemmed Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title_short Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
title_sort gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976029/
https://www.ncbi.nlm.nih.gov/pubmed/35365608
http://dx.doi.org/10.1038/s41467-022-29060-7
work_keys_str_mv AT zhaomingming gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT weihaoran gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT lichenze gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT zhanrui gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT liuchangjie gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT gaojianing gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT yiyaodong gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT cuixiao gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT shanwenxin gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT jiliang gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT panbing gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT chengsi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT songmoshi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT sunhaipeng gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT jianghuidi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT caijun gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT garciabarriominervat gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT chenyeugene gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT mengxiangbao gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT dongerdan gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT wangdaowen gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy
AT zhenglemin gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy