Cargando…
Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy
Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976029/ https://www.ncbi.nlm.nih.gov/pubmed/35365608 http://dx.doi.org/10.1038/s41467-022-29060-7 |
_version_ | 1784680479233933312 |
---|---|
author | Zhao, Mingming Wei, Haoran Li, Chenze Zhan, Rui Liu, Changjie Gao, Jianing Yi, Yaodong Cui, Xiao Shan, Wenxin Ji, Liang Pan, Bing Cheng, Si Song, Moshi Sun, Haipeng Jiang, Huidi Cai, Jun Garcia-Barrio, Minerva T. Chen, Y. Eugene Meng, Xiangbao Dong, Erdan Wang, Dao Wen Zheng, Lemin |
author_facet | Zhao, Mingming Wei, Haoran Li, Chenze Zhan, Rui Liu, Changjie Gao, Jianing Yi, Yaodong Cui, Xiao Shan, Wenxin Ji, Liang Pan, Bing Cheng, Si Song, Moshi Sun, Haipeng Jiang, Huidi Cai, Jun Garcia-Barrio, Minerva T. Chen, Y. Eugene Meng, Xiangbao Dong, Erdan Wang, Dao Wen Zheng, Lemin |
author_sort | Zhao, Mingming |
collection | PubMed |
description | Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. |
format | Online Article Text |
id | pubmed-8976029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-89760292022-04-20 Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy Zhao, Mingming Wei, Haoran Li, Chenze Zhan, Rui Liu, Changjie Gao, Jianing Yi, Yaodong Cui, Xiao Shan, Wenxin Ji, Liang Pan, Bing Cheng, Si Song, Moshi Sun, Haipeng Jiang, Huidi Cai, Jun Garcia-Barrio, Minerva T. Chen, Y. Eugene Meng, Xiangbao Dong, Erdan Wang, Dao Wen Zheng, Lemin Nat Commun Article Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Nature Publishing Group UK 2022-04-01 /pmc/articles/PMC8976029/ /pubmed/35365608 http://dx.doi.org/10.1038/s41467-022-29060-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhao, Mingming Wei, Haoran Li, Chenze Zhan, Rui Liu, Changjie Gao, Jianing Yi, Yaodong Cui, Xiao Shan, Wenxin Ji, Liang Pan, Bing Cheng, Si Song, Moshi Sun, Haipeng Jiang, Huidi Cai, Jun Garcia-Barrio, Minerva T. Chen, Y. Eugene Meng, Xiangbao Dong, Erdan Wang, Dao Wen Zheng, Lemin Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title | Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title_full | Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title_fullStr | Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title_full_unstemmed | Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title_short | Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
title_sort | gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976029/ https://www.ncbi.nlm.nih.gov/pubmed/35365608 http://dx.doi.org/10.1038/s41467-022-29060-7 |
work_keys_str_mv | AT zhaomingming gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT weihaoran gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT lichenze gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT zhanrui gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT liuchangjie gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT gaojianing gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT yiyaodong gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT cuixiao gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT shanwenxin gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT jiliang gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT panbing gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT chengsi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT songmoshi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT sunhaipeng gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT jianghuidi gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT caijun gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT garciabarriominervat gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT chenyeugene gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT mengxiangbao gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT dongerdan gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT wangdaowen gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy AT zhenglemin gutmicrobiotaproductionoftrimethyl5aminovalericacidreducesfattyacidoxidationandacceleratescardiachypertrophy |