Cargando…
Novel drug-target interactions via link prediction and network embedding
BACKGROUND: As many interactions between the chemical and genomic space remain undiscovered, computational methods able to identify potential drug-target interactions (DTIs) are employed to accelerate drug discovery and reduce the required cost. Predicting new DTIs can leverage drug repurposing by i...
Autores principales: | Amiri Souri, E., Laddach, R., Karagiannis, S. N., Papageorgiou, L. G., Tsoka, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978405/ https://www.ncbi.nlm.nih.gov/pubmed/35379165 http://dx.doi.org/10.1186/s12859-022-04650-w |
Ejemplares similares
-
Drug repurposing and prediction of multiple interaction types via graph embedding
por: Amiri Souri, E., et al.
Publicado: (2023) -
Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer
por: Amiri Souri, E., et al.
Publicado: (2021) -
Anchor Link Prediction across Attributed Networks via Network Embedding
por: Wang, Shaokai, et al.
Publicado: (2019) -
iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding
por: Chen, Huiyuan, et al.
Publicado: (2020) -
DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding
por: Yue, Yang, et al.
Publicado: (2021)