Cargando…
Theoretical investigation on the effect of the ligand on bis-silylation of C(sp)–C(sp) by Ni complexes
Density functional theory is used to study the bis-silylation of alkyne catalysed by a transition metal nickel–organic complex. The active catalyst, organic ligand, reaction mechanism, and rate-determining step were discussed with regard to dynamics and thermodynamics. COD or SIPr (COD = cyclooctadi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979076/ https://www.ncbi.nlm.nih.gov/pubmed/35425119 http://dx.doi.org/10.1039/d1ra08153e |
Sumario: | Density functional theory is used to study the bis-silylation of alkyne catalysed by a transition metal nickel–organic complex. The active catalyst, organic ligand, reaction mechanism, and rate-determining step were discussed with regard to dynamics and thermodynamics. COD or SIPr (COD = cyclooctadiene, SIPr = 1,3-bis(2,6-diisopropyl-phenyl)-4,5-dihydroimidazol-2-ylidene) coordination with Ni will greatly reduce the energy barrier of the Si–Si insertion step, that is, ΔΔG reaches 15.5 kcal mol(−1). Furthermore, the structure of alkynes will change the energy barrier of the alkyne insertion step. |
---|