Cargando…

Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Fei, Zhou, Ziyun, Song, Xingyu, Gan, Mi, Long, Jie, Verkhivker, Gennady, Hu, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979438/
https://www.ncbi.nlm.nih.gov/pubmed/35320273
http://dx.doi.org/10.1371/journal.pcbi.1010009
_version_ 1784681175102521344
author Xiao, Fei
Zhou, Ziyun
Song, Xingyu
Gan, Mi
Long, Jie
Verkhivker, Gennady
Hu, Guang
author_facet Xiao, Fei
Zhou, Ziyun
Song, Xingyu
Gan, Mi
Long, Jie
Verkhivker, Gennady
Hu, Guang
author_sort Xiao, Fei
collection PubMed
description Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.
format Online
Article
Text
id pubmed-8979438
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89794382022-04-05 Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation Xiao, Fei Zhou, Ziyun Song, Xingyu Gan, Mi Long, Jie Verkhivker, Gennady Hu, Guang PLoS Comput Biol Research Article Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs. Public Library of Science 2022-03-23 /pmc/articles/PMC8979438/ /pubmed/35320273 http://dx.doi.org/10.1371/journal.pcbi.1010009 Text en © 2022 Xiao et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xiao, Fei
Zhou, Ziyun
Song, Xingyu
Gan, Mi
Long, Jie
Verkhivker, Gennady
Hu, Guang
Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title_full Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title_fullStr Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title_full_unstemmed Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title_short Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation
title_sort dissecting mutational allosteric effects in alkaline phosphatases associated with different hypophosphatasia phenotypes: an integrative computational investigation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979438/
https://www.ncbi.nlm.nih.gov/pubmed/35320273
http://dx.doi.org/10.1371/journal.pcbi.1010009
work_keys_str_mv AT xiaofei dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT zhouziyun dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT songxingyu dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT ganmi dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT longjie dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT verkhivkergennady dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation
AT huguang dissectingmutationalallostericeffectsinalkalinephosphatasesassociatedwithdifferenthypophosphatasiaphenotypesanintegrativecomputationalinvestigation