Cargando…
Exploring the Resistance Mechanisms of Distal D835V Mutation in FLT3 to Inhibitors
OBJECTIVE: FMS-like tyrosine kinase 3 (FLT3) is an attractive therapeutic target in acute myeloid leukemia. Unfortunately, secondary FLT3 mutations that developed resistance to inhibitors have become a severe problem. Specifically, ASP-835 (D835F/H/V/Y) mutant within the activation loop of FLT3 is t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979743/ https://www.ncbi.nlm.nih.gov/pubmed/35387260 http://dx.doi.org/10.1155/2022/3720026 |
Sumario: | OBJECTIVE: FMS-like tyrosine kinase 3 (FLT3) is an attractive therapeutic target in acute myeloid leukemia. Unfortunately, secondary FLT3 mutations that developed resistance to inhibitors have become a severe problem. Specifically, ASP-835 (D835F/H/V/Y) mutant within the activation loop of FLT3 is the most commonly encountered drug-resistant and observed secondary FLT3 mutations. In this study, we carried out a set of computational approaches to explore how this mutation influenced the conformation and dynamics of DFG motif in a manner altered inhibitors' susceptibility. METHODS: Molecular dynamics (MD) simulation, dynamic cross-correlation (DCC) analysis, surface area (SASA), binding free energy (MM-GBSA), and structural analysis were used to compare the severe and minor D835V mutation-induced impact to sorafenib and crenolanib, respectively. RESULTS: The A-loop of the FLT3 protein may experience conformational change in the presence of the resistant mutation, which were mainly positioned at PHE-830. The protein-inhibitor interactions displayed that the motions of PHE-830 influenced that of sorafenib, but not to crenolanib. CONCLUSIONS: These findings indicated that the structural impact brought by D835V mutation should be considered in designing novel drugs to overcome resistance to FLT3-D835V. |
---|