Cargando…
_version_ 1784681304171741184
author Alhalabi, Omar
Chen, Jianfeng
Zhang, Yuxue
Lu, Yang
Wang, Qi
Ramachandran, Sumankalai
Tidwell, Rebecca Slack
Han, Guangchun
Yan, Xinmiao
Meng, Jieru
Wang, Ruiping
Hoang, Anh G.
Wang, Wei-Lien
Song, Jian
Lopez, Lidia
Andreev-Drakhlin, Alex
Siefker-Radtke, Arlene
Zhang, Xinqiao
Benedict, William F.
Shah, Amishi Y.
Wang, Jennifer
Msaouel, Pavlos
Zhang, Miao
Guo, Charles C.
Czerniak, Bogdan
Behrens, Carmen
Soto, Luisa
Papadimitrakopoulou, Vassiliki
Lewis, Jeff
Rinsurongkawong, Waree
Rinsurongkawong, Vadeerat
Lee, Jack
Roth, Jack
Swisher, Stephen
Wistuba, Ignacio
Heymach, John
Wang, Jing
Campbell, Matthew T.
Efstathiou, Eleni
Titus, Mark
Logothetis, Christopher J.
Ho, Thai H.
Zhang, Jianjun
Wang, Linghua
Gao, Jianjun
author_facet Alhalabi, Omar
Chen, Jianfeng
Zhang, Yuxue
Lu, Yang
Wang, Qi
Ramachandran, Sumankalai
Tidwell, Rebecca Slack
Han, Guangchun
Yan, Xinmiao
Meng, Jieru
Wang, Ruiping
Hoang, Anh G.
Wang, Wei-Lien
Song, Jian
Lopez, Lidia
Andreev-Drakhlin, Alex
Siefker-Radtke, Arlene
Zhang, Xinqiao
Benedict, William F.
Shah, Amishi Y.
Wang, Jennifer
Msaouel, Pavlos
Zhang, Miao
Guo, Charles C.
Czerniak, Bogdan
Behrens, Carmen
Soto, Luisa
Papadimitrakopoulou, Vassiliki
Lewis, Jeff
Rinsurongkawong, Waree
Rinsurongkawong, Vadeerat
Lee, Jack
Roth, Jack
Swisher, Stephen
Wistuba, Ignacio
Heymach, John
Wang, Jing
Campbell, Matthew T.
Efstathiou, Eleni
Titus, Mark
Logothetis, Christopher J.
Ho, Thai H.
Zhang, Jianjun
Wang, Linghua
Gao, Jianjun
author_sort Alhalabi, Omar
collection PubMed
description Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAP(def)) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAP(def) urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAP(def) patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAP(def) patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAP(def) associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAP(def) and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
format Online
Article
Text
id pubmed-8980015
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89800152022-04-20 MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers Alhalabi, Omar Chen, Jianfeng Zhang, Yuxue Lu, Yang Wang, Qi Ramachandran, Sumankalai Tidwell, Rebecca Slack Han, Guangchun Yan, Xinmiao Meng, Jieru Wang, Ruiping Hoang, Anh G. Wang, Wei-Lien Song, Jian Lopez, Lidia Andreev-Drakhlin, Alex Siefker-Radtke, Arlene Zhang, Xinqiao Benedict, William F. Shah, Amishi Y. Wang, Jennifer Msaouel, Pavlos Zhang, Miao Guo, Charles C. Czerniak, Bogdan Behrens, Carmen Soto, Luisa Papadimitrakopoulou, Vassiliki Lewis, Jeff Rinsurongkawong, Waree Rinsurongkawong, Vadeerat Lee, Jack Roth, Jack Swisher, Stephen Wistuba, Ignacio Heymach, John Wang, Jing Campbell, Matthew T. Efstathiou, Eleni Titus, Mark Logothetis, Christopher J. Ho, Thai H. Zhang, Jianjun Wang, Linghua Gao, Jianjun Nat Commun Article Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAP(def)) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAP(def) urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAP(def) patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAP(def) patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAP(def) associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAP(def) and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials. Nature Publishing Group UK 2022-04-04 /pmc/articles/PMC8980015/ /pubmed/35379845 http://dx.doi.org/10.1038/s41467-022-29397-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Alhalabi, Omar
Chen, Jianfeng
Zhang, Yuxue
Lu, Yang
Wang, Qi
Ramachandran, Sumankalai
Tidwell, Rebecca Slack
Han, Guangchun
Yan, Xinmiao
Meng, Jieru
Wang, Ruiping
Hoang, Anh G.
Wang, Wei-Lien
Song, Jian
Lopez, Lidia
Andreev-Drakhlin, Alex
Siefker-Radtke, Arlene
Zhang, Xinqiao
Benedict, William F.
Shah, Amishi Y.
Wang, Jennifer
Msaouel, Pavlos
Zhang, Miao
Guo, Charles C.
Czerniak, Bogdan
Behrens, Carmen
Soto, Luisa
Papadimitrakopoulou, Vassiliki
Lewis, Jeff
Rinsurongkawong, Waree
Rinsurongkawong, Vadeerat
Lee, Jack
Roth, Jack
Swisher, Stephen
Wistuba, Ignacio
Heymach, John
Wang, Jing
Campbell, Matthew T.
Efstathiou, Eleni
Titus, Mark
Logothetis, Christopher J.
Ho, Thai H.
Zhang, Jianjun
Wang, Linghua
Gao, Jianjun
MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title_full MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title_fullStr MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title_full_unstemmed MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title_short MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
title_sort mtap deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980015/
https://www.ncbi.nlm.nih.gov/pubmed/35379845
http://dx.doi.org/10.1038/s41467-022-29397-z
work_keys_str_mv AT alhalabiomar mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT chenjianfeng mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT zhangyuxue mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT luyang mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wangqi mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT ramachandransumankalai mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT tidwellrebeccaslack mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT hanguangchun mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT yanxinmiao mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT mengjieru mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wangruiping mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT hoanganhg mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wangweilien mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT songjian mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT lopezlidia mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT andreevdrakhlinalex mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT siefkerradtkearlene mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT zhangxinqiao mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT benedictwilliamf mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT shahamishiy mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wangjennifer mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT msaouelpavlos mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT zhangmiao mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT guocharlesc mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT czerniakbogdan mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT behrenscarmen mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT sotoluisa mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT papadimitrakopoulouvassiliki mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT lewisjeff mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT rinsurongkawongwaree mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT rinsurongkawongvadeerat mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT leejack mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT rothjack mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT swisherstephen mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wistubaignacio mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT heymachjohn mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wangjing mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT campbellmatthewt mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT efstathioueleni mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT titusmark mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT logothetischristopherj mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT hothaih mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT zhangjianjun mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT wanglinghua mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers
AT gaojianjun mtapdeficiencycreatesanexploitabletargetforantifolatetherapyin9p21losscancers