Cargando…
A Novel Hierarchical Clustering Approach for Joint Analysis of Multiple Phenotypes Uncovers Obesity Variants Based on ARIC
Genome-wide association studies (GWASs) have successfully discovered numerous variants underlying various diseases. Generally, one-phenotype one-variant association study in GWASs is not efficient in identifying variants with weak effects, indicating that more signals have not been identified yet. N...
Autores principales: | Fu, Liwan, Wang, Yuquan, Li, Tingting, Yang, Siqian, Hu, Yue-Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981031/ https://www.ncbi.nlm.nih.gov/pubmed/35391794 http://dx.doi.org/10.3389/fgene.2022.791920 |
Ejemplares similares
-
A Novel Approach Integrating Hierarchical Clustering and Weighted Combination for Association Study of Multiple Phenotypes and a Genetic Variant
por: Fu, Liwan, et al.
Publicado: (2021) -
A Novel Method for Mendelian Randomization Analyses With Pleiotropy and Linkage Disequilibrium in Genetic Variants From Individual Data
por: Wang, Yuquan, et al.
Publicado: (2021) -
Causal effects of B vitamins and homocysteine on obesity and musculoskeletal diseases: A Mendelian randomization study
por: Fu, Liwan, et al.
Publicado: (2022) -
AGNEP: An Agglomerative Nesting Clustering Algorithm for Phenotypic Dimension Reduction in Joint Analysis of Multiple Phenotypes
por: Liu, Fengrong, et al.
Publicado: (2021) -
Identification of a coagulation‐related signature correlated with immune infiltration and their prognostic implications in lung adenocarcinoma
por: Yang, Siqian, et al.
Publicado: (2023)