Cargando…
Akt-GSK3β-mPTP pathway regulates the mitochondrial dysfunction contributing to odontoblasts apoptosis induced by glucose oxidative stress
Diabetes Mellitus can cause dental pulp cells apoptosis by oxidative stress, and affect the integrity and function of dental pulp tissue. Mitochondria are the main attack targets of oxidative stress and have a critical role in apoptosis. However, whether mitochondria are involved in dental pulp dama...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983683/ https://www.ncbi.nlm.nih.gov/pubmed/35383148 http://dx.doi.org/10.1038/s41420-022-00981-y |
Sumario: | Diabetes Mellitus can cause dental pulp cells apoptosis by oxidative stress, and affect the integrity and function of dental pulp tissue. Mitochondria are the main attack targets of oxidative stress and have a critical role in apoptosis. However, whether mitochondria are involved in dental pulp damage caused by diabetes mellitus remains unclear. This study aimed to investigate the role of mitochondria in the apoptosis of odontoblast-like cell line (mDPC6T) induced by glucose oxidative stress, and to explore its possible mechanism. We established an oxidative stress model in vitro using glucose oxidase/glucose to simulate the pathological state under diabetic conditions. We found that the opening of mitochondrial permeability transition pore (mPTP) contributed to the apoptosis of mDPC6T treated with glucose oxidase, as evidenced by enhanced mitochondrial reactive oxygen species (mtROS) and intracellular Ca(2+) disorder, significantly reduced mitochondrial membrane potential (MMP) and ATP production. Antioxidant N-acetylcysteine (NAC) or Cyclosporine A (mPTP inhibitor) blocked the mPTP opening, which significantly attenuated mitochondrial dysfunction and apoptosis induced by glucose oxidative stress. In addition, we found that glucose oxidative stress stimulated mPTP opening may through inhibition of Akt-GSK3β pathway. This study provides a new insight into the mitochondrial mechanism underlying diabetes-associated odontoblast-like cell apoptosis, laying a foundation for the prevention and treatment of diabetes-associated pulp injury. |
---|