Cargando…
Is Class-Incremental Enough for Continual Learning?
The ability of a model to learn continually can be empirically assessed in different continual learning scenarios. Each scenario defines the constraints and the opportunities of the learning environment. Here, we challenge the current trend in the continual learning literature to experiment mainly o...
Autores principales: | Cossu, Andrea, Graffieti, Gabriele, Pellegrini, Lorenzo, Maltoni, Davide, Bacciu, Davide, Carta, Antonio, Lomonaco, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989463/ https://www.ncbi.nlm.nih.gov/pubmed/35402898 http://dx.doi.org/10.3389/frai.2022.829842 |
Ejemplares similares
-
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
por: Carta, Antonio, et al.
Publicado: (2022) -
Class incremental learning of remote sensing images based on class similarity distillation
por: Shen, Mingge, et al.
Publicado: (2023) -
Incremental learning of LSTM framework for sensor fusion in attitude estimation
por: Narkhede, Parag, et al.
Publicado: (2021) -
Dynamic sampling of images from various categories for classification based incremental deep learning in fog computing
por: Dube, Swaraj, et al.
Publicado: (2021) -
Self-Net: Lifelong Learning via Continual Self-Modeling
por: Mandivarapu, Jaya Krishna, et al.
Publicado: (2020)