Cargando…

Molecular characterization of ethyl carbamate toxicity in Caenorhabditis elegans

Ethyl carbamate is a common contaminant prevalent in fermented food with probable carcinogenic effects in animals. To date, other toxicological properties of ethyl carbamate are not well characterized. Using the genetic model Caenorhabditis elegans, we found that chronic exposure to ethyl carbamate...

Descripción completa

Detalles Bibliográficos
Autores principales: Comfort, Jordan J., Chomyshen, Samantha C., Waddell, Brandon M., Tabarraei, Hadi, Wu, Cheng-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990054/
https://www.ncbi.nlm.nih.gov/pubmed/35399212
http://dx.doi.org/10.1016/j.toxrep.2022.03.029
Descripción
Sumario:Ethyl carbamate is a common contaminant prevalent in fermented food with probable carcinogenic effects in animals. To date, other toxicological properties of ethyl carbamate are not well characterized. Using the genetic model Caenorhabditis elegans, we found that chronic exposure to ethyl carbamate during larval development impedes growth while exposure during adulthood inhibits reproduction, shortens lifespan, and promotes degeneration to dopaminergic neurons. Through whole-transcriptome RNA-sequencing, we found that ethyl carbamate invokes a widespread transcriptomic response inducing the differential expression of > 4,000 genes by at least 2-fold. Functional analysis of RNA-sequencing data revealed that up-regulated genes enrich to various neuron regulatory processes and xenobiotic defense. Gene expression analysis confirms that various genes encoding antioxidant enzymes and those functioning within phase I and II detoxification responses along with ABC transporters are highly up-regulated after ethyl carbamate exposure, suggesting the onset of oxidative stress. Overall, these findings report new toxicological properties of chronic ethyl carbamate exposure and provide new insights on its effects on transcriptome regulation in the C. elegans model.