Cargando…
C/EBP homologous protein promotes Sonic Hedgehog secretion from type II alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis
BACKGROUND: Endoplasmic reticulum (ER) stress is involved in the pathological process of pulmonary fibrosis, including IPF. It affects a broad scope of cellular types during pulmonary fibrosis but the role in epithelial-mesenchymal crosstalk has not been fully defined. The present study aimed to inv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991723/ https://www.ncbi.nlm.nih.gov/pubmed/35395850 http://dx.doi.org/10.1186/s12931-022-02012-x |
Sumario: | BACKGROUND: Endoplasmic reticulum (ER) stress is involved in the pathological process of pulmonary fibrosis, including IPF. It affects a broad scope of cellular types during pulmonary fibrosis but the role in epithelial-mesenchymal crosstalk has not been fully defined. The present study aimed to investigate the effects of Shh secretion by ER stress-challenged type II alveolar epithelial cells (AECII) on fibroblast and pulmonary fibrosis. METHODS: Conditioned medium (CM) from tunicamycin (TM)-treated AECII was collected and incubated with fibroblast. Short hairpin RNA (shRNA) was used for RNA interference of C/EBP homologous protein (CHOP). The effects of CHOP and HH signaling were evaluated by TM administration under the background of bleomycin-induced pulmonary fibrosis in mice. RESULTS: Both expression of CHOP and Shh in AECII, and HH signaling in mesenchyme were upregulated in IPF lung. TM-induced Shh secretion from AECII activates HH signaling and promotes pro-fibrotic effects of fibroblast. Interfering CHOP expression reduced ER stress-induced Shh secretion and alleviated pulmonary fibrosis in mice. CONCLUSIONS: Our work identified a novel mechanism by which ER stress is involved in pulmonary fibrosis. Inhibition of ER stress or CHOP in epithelial cells alleviated pulmonary fibrosis by suppressing Shh/HH signaling pathway of fibroblasts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-022-02012-x. |
---|