Cargando…

Blocking Gi/o-Coupled Signaling Eradicates Cancer Stem Cells and Sensitizes Breast Tumors to HER2-Targeted Therapies to Inhibit Tumor Relapse

SIMPLE SUMMARY: Cancer stem cells (CSCs) are associated with therapeutic resistance and tumor relapse but effective approaches for eliminating CSCs are still lacking. The aim of this study was to assess the role of G protein-coupled receptors (GPCRs) in regulating CSCs in breast cancer. We showed th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Cancan, Ye, Yuanchao, Weigel, Ronald J., Chen, Songhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997047/
https://www.ncbi.nlm.nih.gov/pubmed/35406489
http://dx.doi.org/10.3390/cancers14071719
Descripción
Sumario:SIMPLE SUMMARY: Cancer stem cells (CSCs) are associated with therapeutic resistance and tumor relapse but effective approaches for eliminating CSCs are still lacking. The aim of this study was to assess the role of G protein-coupled receptors (GPCRs) in regulating CSCs in breast cancer. We showed that a subgroup of GPCRs that coupled to Gi/o proteins (Gi/o-GPCRs) was required for maintaining the tumor-forming capability of CSCs in HER2+ breast cancer. Targeting Gi/o-GPCRs or their downstream PI3K/AKT and Src pathways was able to enhance HER2-targeted elimination of CSCs and therapeutic efficacy. These findings suggest that targeting Gi/o-GPCR signaling is an effective strategy for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor recurrence. ABSTRACT: Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that are resistant to anti-tumor therapies, making them a likely origin of tumor relapse after treatment. In many cancers including breast cancer, CSC function is regulated by G protein-coupled receptors (GPCRs), making GPCR signaling an attractive target for new therapies designed to eradicate CSCs. Yet, CSCs overexpress multiple GPCRs that are redundant in maintaining CSC function, so it is unclear how to target all the various GPCRs to prevent relapse. Here, in a model of HER2+ breast cancer (i.e., transgenic MMTV-Neu mice), we were able to block the tumorsphere- and tumor-forming capability of CSCs by targeting GPCRs coupled to Gi/o proteins (Gi/o-GPCRs). Similarly, in HER2+ breast cancer cells, blocking signaling downstream of Gi/o-GPCRs in the PI3K/AKT and Src pathways also enhanced HER2-targeted elimination of CSCs. In a proof-of-concept study, when CSCs were selectively ablated (via a suicide gene construct), loss of CSCs from HER2+ breast cancer cell populations mimicked the effect of targeting Gi/o-GPCR signaling, suppressing their capacity for tumor initiation and progression and enhancing HER2-targeted therapy. Thus, targeting Gi/o-GPCR signaling in HER2+ breast cancer is a promising approach for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor reemergence.