Cargando…

Chitooligosaccharide Conjugates Prepared Using Several Phenolic Compounds via Ascorbic Acid/H(2)O(2) Free Radical Grafting: Characteristics, Antioxidant, Antidiabetic, and Antimicrobial Activities

Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and (1)H-NMR spectra and tested for antioxidant, antidiabetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Mittal, Ajay, Singh, Avtar, Zhang, Bin, Visessanguan, Wonnop, Benjakul, Soottawat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997384/
https://www.ncbi.nlm.nih.gov/pubmed/35407006
http://dx.doi.org/10.3390/foods11070920
Descripción
Sumario:Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and (1)H-NMR spectra and tested for antioxidant, antidiabetic, and antimicrobial activities. Grafting of PPNs with COS was achieved. The highest conjugation efficiency was noticed for COS-catechin (COS-CAT), which was identified to have the highest total phenolic content (TPC) out of all the conjugates (p < 0.05). For antioxidant activities, DPPH and ABTS radical scavenging activities (DPPH-RSA and ABTS-RSA, respectively), oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and metal chelating activity (MCA) of all the samples were positively correlated with the TPC incorporated. COS-CAT had higher DPPH-RSA, ABTS-RSA, ORAC, and FRAP than COS and all other COS-PPN conjugates (p < 0.05). In addition, COS-CAT also showed the highest antidiabetic activity of the conjugates, as determined by inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase (p < 0.05). COS-CAT also had the highest antimicrobial activity against all tested Gram-negative and Gram-positive bacteria (p < 0.05). Overall, grafting of PPNs, especially CAT on COS, significantly enhanced bioactivities, including antioxidant and antimicrobial, which could be used to retard spoilage and enhance shelf-life of various food systems. Moreover, the ability of COS-CAT to inhibit digestive enzymes reflects its preventive effect on diabetes mellitus and its complications.