Cargando…

Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium

Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimuriu...

Descripción completa

Detalles Bibliográficos
Autores principales: Morshdy, Alaa Eldin M. A., El-tahlawy, Ahmed S., Qari, Sameer H., Qumsani, Alaa T., Bay, Daniyah Habiballah, Sami, Rokayya, Althubaiti, Eman Hillal, Mansour, Ahmed M. A., Aljahani, Amani H., Hafez, Abd El-Salam E., Mahmoud, Abdallah Fikry A., El Bayomi, Rasha M., Hussein, Mohamed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000680/
https://www.ncbi.nlm.nih.gov/pubmed/35408576
http://dx.doi.org/10.3390/molecules27072182
Descripción
Sumario:Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.