Cargando…
Vision-Based Learning from Demonstration System for Robot Arms
Robotic arms have been widely used in various industries and have the advantages of cost savings, high productivity, and efficiency. Although robotic arms are good at increasing efficiency in repetitive tasks, they still need to be re-programmed and optimized when new tasks are to be deployed, resul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002941/ https://www.ncbi.nlm.nih.gov/pubmed/35408292 http://dx.doi.org/10.3390/s22072678 |
_version_ | 1784686011277639680 |
---|---|
author | Hwang, Pin-Jui Hsu, Chen-Chien Chou, Po-Yung Wang, Wei-Yen Lin, Cheng-Hung |
author_facet | Hwang, Pin-Jui Hsu, Chen-Chien Chou, Po-Yung Wang, Wei-Yen Lin, Cheng-Hung |
author_sort | Hwang, Pin-Jui |
collection | PubMed |
description | Robotic arms have been widely used in various industries and have the advantages of cost savings, high productivity, and efficiency. Although robotic arms are good at increasing efficiency in repetitive tasks, they still need to be re-programmed and optimized when new tasks are to be deployed, resulting in detrimental downtime and high cost. It is therefore the objective of this paper to present a learning from demonstration (LfD) robotic system to provide a more intuitive way for robots to efficiently perform tasks through learning from human demonstration on the basis of two major components: understanding through human demonstration and reproduction by robot arm. To understand human demonstration, we propose a vision-based spatial-temporal action detection method to detect human actions that focuses on meticulous hand movement in real time to establish an action base. An object trajectory inductive method is then proposed to obtain a key path for objects manipulated by the human through multiple demonstrations. In robot reproduction, we integrate the sequence of actions in the action base and the key path derived by the object trajectory inductive method for motion planning to reproduce the task demonstrated by the human user. Because of the capability of learning from demonstration, the robot can reproduce the tasks that the human demonstrated with the help of vision sensors in unseen contexts. |
format | Online Article Text |
id | pubmed-9002941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90029412022-04-13 Vision-Based Learning from Demonstration System for Robot Arms Hwang, Pin-Jui Hsu, Chen-Chien Chou, Po-Yung Wang, Wei-Yen Lin, Cheng-Hung Sensors (Basel) Article Robotic arms have been widely used in various industries and have the advantages of cost savings, high productivity, and efficiency. Although robotic arms are good at increasing efficiency in repetitive tasks, they still need to be re-programmed and optimized when new tasks are to be deployed, resulting in detrimental downtime and high cost. It is therefore the objective of this paper to present a learning from demonstration (LfD) robotic system to provide a more intuitive way for robots to efficiently perform tasks through learning from human demonstration on the basis of two major components: understanding through human demonstration and reproduction by robot arm. To understand human demonstration, we propose a vision-based spatial-temporal action detection method to detect human actions that focuses on meticulous hand movement in real time to establish an action base. An object trajectory inductive method is then proposed to obtain a key path for objects manipulated by the human through multiple demonstrations. In robot reproduction, we integrate the sequence of actions in the action base and the key path derived by the object trajectory inductive method for motion planning to reproduce the task demonstrated by the human user. Because of the capability of learning from demonstration, the robot can reproduce the tasks that the human demonstrated with the help of vision sensors in unseen contexts. MDPI 2022-03-31 /pmc/articles/PMC9002941/ /pubmed/35408292 http://dx.doi.org/10.3390/s22072678 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hwang, Pin-Jui Hsu, Chen-Chien Chou, Po-Yung Wang, Wei-Yen Lin, Cheng-Hung Vision-Based Learning from Demonstration System for Robot Arms |
title | Vision-Based Learning from Demonstration System for Robot Arms |
title_full | Vision-Based Learning from Demonstration System for Robot Arms |
title_fullStr | Vision-Based Learning from Demonstration System for Robot Arms |
title_full_unstemmed | Vision-Based Learning from Demonstration System for Robot Arms |
title_short | Vision-Based Learning from Demonstration System for Robot Arms |
title_sort | vision-based learning from demonstration system for robot arms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002941/ https://www.ncbi.nlm.nih.gov/pubmed/35408292 http://dx.doi.org/10.3390/s22072678 |
work_keys_str_mv | AT hwangpinjui visionbasedlearningfromdemonstrationsystemforrobotarms AT hsuchenchien visionbasedlearningfromdemonstrationsystemforrobotarms AT choupoyung visionbasedlearningfromdemonstrationsystemforrobotarms AT wangweiyen visionbasedlearningfromdemonstrationsystemforrobotarms AT linchenghung visionbasedlearningfromdemonstrationsystemforrobotarms |