Cargando…
Determining clinically relevant features in cytometry data using persistent homology
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more s...
Autores principales: | Mukherjee, Soham, Wethington, Darren, Dey, Tamal K., Das, Jayajit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009779/ https://www.ncbi.nlm.nih.gov/pubmed/35312683 http://dx.doi.org/10.1371/journal.pcbi.1009931 |
Ejemplares similares
-
McSNAC: A software to approximate first-order signaling networks from mass cytometry data
por: Wethington, Darren, et al.
Publicado: (2023) -
Gene expression data classification using topology and machine learning models
por: Dey, Tamal K., et al.
Publicado: (2022) -
Maximum Entropy Estimation of Probability Distribution of Variables in Higher Dimensions from Lower Dimensional Data
por: Das, Jayajit, et al.
Publicado: (2015) -
Anatomical features and clinical relevance of a persistent trigeminal artery
por: Alcalá-Cerra, Gabriel, et al.
Publicado: (2012) -
Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization
por: Biehl, Michael, et al.
Publicado: (2013)