Cargando…
Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data
Single-cell RNA sequencing distinguishes cell types, states, and lineages within the context of heterogeneous tissues. However current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010342/ https://www.ncbi.nlm.nih.gov/pubmed/34764492 http://dx.doi.org/10.1038/s41587-021-01091-3 |
Sumario: | Single-cell RNA sequencing distinguishes cell types, states, and lineages within the context of heterogeneous tissues. However current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated bulk expression data and single-cell data by first quantifying the similarity between each single cell and each bulk sample. It then optimizes a regression model on the correlation matrix with the sample phenotype to identify relevant subpopulations. Applied to a lung cancer single-cell RNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor was effective in interpreting Facioscapulohumeral muscular dystrophy (FSHD) and Alzheimer’s disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from single-cell assays by leveraging phenotype and bulk-omics datasets. |
---|