Cargando…
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. Th...
Autores principales: | Zeng, Yanyan, Li, Jing, Wei, Chaochun, Zhao, Hongyu, Tao, Wang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011970/ https://www.ncbi.nlm.nih.gov/pubmed/35422001 http://dx.doi.org/10.1186/s13059-022-02657-3 |
Ejemplares similares
-
Author Correction: mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2023) -
Long-read amplicon denoising
por: Kumar, Venkatesh, et al.
Publicado: (2019) -
Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches
por: Nearing, Jacob T., et al.
Publicado: (2018) -
A fast blind zero-shot denoiser
por: Lequyer, Jason, et al.
Publicado: (2022) -
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
por: Ai, Danni, et al.
Publicado: (2015)