Cargando…
Endoplasmic reticulum stress downregulates PGC-1α in skeletal muscle through ATF4 and an mTOR-mediated reduction of CRTC2
BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012021/ https://www.ncbi.nlm.nih.gov/pubmed/35428325 http://dx.doi.org/10.1186/s12964-022-00865-9 |
Sumario: | BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential mechanisms involved. METHODS: The human skeletal muscle cell line LHCN-M2 and mice exposed to different inducers of ER stress were used. RESULTS: Palmitate- or tunicamycin-induced ER stress resulted in PGC-1α downregulation and enhanced expression of activating transcription factor 4 (ATF4) in human myotubes and mouse skeletal muscle. Overexpression of ATF4 decreased basal PCG-1α expression, whereas ATF4 knockdown abrogated the reduction of PCG-1α caused by tunicamycin in myotubes. ER stress induction also activated mammalian target of rapamycin (mTOR) in myotubes and reduced the nuclear levels of cAMP response element-binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), a positive modulator of PGC-1α transcription. The mTOR inhibitor torin 1 restored PCG-1α and CRTC2 protein levels. Moreover, siRNA against S6 kinase, an mTORC1 downstream target, prevented the reduction in the expression of CRTC2 and PGC-1α caused by the ER stressor tunicamycin. CONCLUSIONS: Collectively, these findings demonstrate that ATF4 and the mTOR-CRTC2 axis regulates PGC-1α transcription under ER stress conditions in skeletal muscle, suggesting that its inhibition might be a therapeutic target for insulin resistant states. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12964-022-00865-9. |
---|