Cargando…

Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism

Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory c...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Hae Yon, Choi, Jinwook, Kraaier, Lianne, Kim, Young Hoon, Eisenbarth, David, Yi, Kijong, Kang, Ju‐Gyeong, Kim, Jin Woo, Shim, Hyo Sup, Lee, Joo‐Hyeon, Lim, Dae‐Sik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016350/
https://www.ncbi.nlm.nih.gov/pubmed/35285539
http://dx.doi.org/10.15252/embj.2021109365
_version_ 1784688512406126592
author Jeon, Hae Yon
Choi, Jinwook
Kraaier, Lianne
Kim, Young Hoon
Eisenbarth, David
Yi, Kijong
Kang, Ju‐Gyeong
Kim, Jin Woo
Shim, Hyo Sup
Lee, Joo‐Hyeon
Lim, Dae‐Sik
author_facet Jeon, Hae Yon
Choi, Jinwook
Kraaier, Lianne
Kim, Young Hoon
Eisenbarth, David
Yi, Kijong
Kang, Ju‐Gyeong
Kim, Jin Woo
Shim, Hyo Sup
Lee, Joo‐Hyeon
Lim, Dae‐Sik
author_sort Jeon, Hae Yon
collection PubMed
description Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage‐associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4‐mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ‐mTORC1‐ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases.
format Online
Article
Text
id pubmed-9016350
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90163502022-04-28 Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism Jeon, Hae Yon Choi, Jinwook Kraaier, Lianne Kim, Young Hoon Eisenbarth, David Yi, Kijong Kang, Ju‐Gyeong Kim, Jin Woo Shim, Hyo Sup Lee, Joo‐Hyeon Lim, Dae‐Sik EMBO J Articles Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage‐associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4‐mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ‐mTORC1‐ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases. John Wiley and Sons Inc. 2022-03-14 /pmc/articles/PMC9016350/ /pubmed/35285539 http://dx.doi.org/10.15252/embj.2021109365 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Jeon, Hae Yon
Choi, Jinwook
Kraaier, Lianne
Kim, Young Hoon
Eisenbarth, David
Yi, Kijong
Kang, Ju‐Gyeong
Kim, Jin Woo
Shim, Hyo Sup
Lee, Joo‐Hyeon
Lim, Dae‐Sik
Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title_full Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title_fullStr Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title_full_unstemmed Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title_short Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
title_sort airway secretory cell fate conversion via yap‐mtorc1‐dependent essential amino acid metabolism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016350/
https://www.ncbi.nlm.nih.gov/pubmed/35285539
http://dx.doi.org/10.15252/embj.2021109365
work_keys_str_mv AT jeonhaeyon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT choijinwook airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT kraaierlianne airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT kimyounghoon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT eisenbarthdavid airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT yikijong airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT kangjugyeong airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT kimjinwoo airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT shimhyosup airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT leejoohyeon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism
AT limdaesik airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism