Cargando…
Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism
Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory c...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016350/ https://www.ncbi.nlm.nih.gov/pubmed/35285539 http://dx.doi.org/10.15252/embj.2021109365 |
_version_ | 1784688512406126592 |
---|---|
author | Jeon, Hae Yon Choi, Jinwook Kraaier, Lianne Kim, Young Hoon Eisenbarth, David Yi, Kijong Kang, Ju‐Gyeong Kim, Jin Woo Shim, Hyo Sup Lee, Joo‐Hyeon Lim, Dae‐Sik |
author_facet | Jeon, Hae Yon Choi, Jinwook Kraaier, Lianne Kim, Young Hoon Eisenbarth, David Yi, Kijong Kang, Ju‐Gyeong Kim, Jin Woo Shim, Hyo Sup Lee, Joo‐Hyeon Lim, Dae‐Sik |
author_sort | Jeon, Hae Yon |
collection | PubMed |
description | Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage‐associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4‐mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ‐mTORC1‐ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases. |
format | Online Article Text |
id | pubmed-9016350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90163502022-04-28 Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism Jeon, Hae Yon Choi, Jinwook Kraaier, Lianne Kim, Young Hoon Eisenbarth, David Yi, Kijong Kang, Ju‐Gyeong Kim, Jin Woo Shim, Hyo Sup Lee, Joo‐Hyeon Lim, Dae‐Sik EMBO J Articles Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage‐associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4‐mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ‐mTORC1‐ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases. John Wiley and Sons Inc. 2022-03-14 /pmc/articles/PMC9016350/ /pubmed/35285539 http://dx.doi.org/10.15252/embj.2021109365 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Jeon, Hae Yon Choi, Jinwook Kraaier, Lianne Kim, Young Hoon Eisenbarth, David Yi, Kijong Kang, Ju‐Gyeong Kim, Jin Woo Shim, Hyo Sup Lee, Joo‐Hyeon Lim, Dae‐Sik Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title | Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title_full | Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title_fullStr | Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title_full_unstemmed | Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title_short | Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism |
title_sort | airway secretory cell fate conversion via yap‐mtorc1‐dependent essential amino acid metabolism |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016350/ https://www.ncbi.nlm.nih.gov/pubmed/35285539 http://dx.doi.org/10.15252/embj.2021109365 |
work_keys_str_mv | AT jeonhaeyon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT choijinwook airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT kraaierlianne airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT kimyounghoon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT eisenbarthdavid airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT yikijong airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT kangjugyeong airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT kimjinwoo airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT shimhyosup airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT leejoohyeon airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism AT limdaesik airwaysecretorycellfateconversionviayapmtorc1dependentessentialaminoacidmetabolism |