Cargando…

Piezo1 activation attenuates thrombin-induced blebbing in breast cancer cells

Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that p...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Callaghan, Paul, Engberg, Adam, Eriksson, Olle, Fatsis-Kavalopoulos, Nikos, Stelzl, Christina, Sanchez, Gonzalo, Idevall-Hagren, Olof, Kreuger, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016622/
https://www.ncbi.nlm.nih.gov/pubmed/35274124
http://dx.doi.org/10.1242/jcs.258809
Descripción
Sumario:Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that protease-activated receptor 1 (PAR1) activation is sufficient to induce this effect. Cell confinement has been implicated as a driving force in bleb-based migration. Unexpectedly, we found that gentle contact compression, exerted using a custom built ‘cell press’ to mechanically stimulate cells, reduced thrombin-induced blebbing. Thrombin-induced blebbing was similarly attenuated using the small molecule Yoda1, an agonist of the mechanosensitive Ca(2+) channel Piezo1, and this attenuation was impaired in Piezo1-depleted cells. Additionally, Piezo1 activation suppressed thrombin-induced phosphorylation of ezrin, radixin and moesin (ERM) proteins, which are implicated in the blebbing process. Our results provide mechanistic insights into Piezo1 activation as a suppressor of dynamic blebbing, specifically that which is induced by thrombin.