Cargando…

A Concept for Three-Dimensional Particle Metrology Based on Scanning Electron Microscopy and Structure-from-Motion Photogrammetry

Scanning electron microscopy (SEM) has been frequently used for size and shape measurements of particles. SEM images offer two-dimensional (2D) information about a particle’s lateral dimensions. Unfortunately, information about the particle’s three-dimensional (3D) size and shape remains unavailable...

Descripción completa

Detalles Bibliográficos
Autor principal: Tondare, Vipin N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017872/
https://www.ncbi.nlm.nih.gov/pubmed/35465391
http://dx.doi.org/10.6028/jres.125.014
Descripción
Sumario:Scanning electron microscopy (SEM) has been frequently used for size and shape measurements of particles. SEM images offer two-dimensional (2D) information about a particle’s lateral dimensions. Unfortunately, information about the particle’s three-dimensional (3D) size and shape remains unavailable. To resolve this issue, I propose a new concept in SEM: 3D particle metrology obtained by applying structure-from-motion (SfM) algorithms to multiple rotational SEM images of particles deposited onto a cylindrical substrate to generate a 3D model from which size and shape information can be extracted. Particles can have any size that is suitable for SEM imaging. SEM images of the sample can be acquired from 0° to 360° using a rotational-tip SEM substage. Here, I will discuss the concept and, for clarity, illustrate it with aquarium gravel particles that are glued onto a craft roll and imaged optically before generating the 3D model of that handmade craft. Future work will include the experimental SEM realization, as well as further development of the SfM algorithms. In my view, this proposed concept may become an integral part of SEM-based particle metrology.