Cargando…
The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
Resistance to pyrethroid insecticides is a major concern for malaria vector control. Pyrethroids target the voltage‐gated sodium channel (VGSC), an essential component of the mosquito nervous system. Substitutions in the amino acid sequence can induce a resistance phenotype. We use whole‐genome sequ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019111/ https://www.ncbi.nlm.nih.gov/pubmed/33590926 http://dx.doi.org/10.1111/mec.15845 |
_version_ | 1784689179402174464 |
---|---|
author | Clarkson, Chris S. Miles, Alistair Harding, Nicholas J. O’Reilly, Andrias O. Weetman, David Kwiatkowski, Dominic Donnelly, Martin J. |
author_facet | Clarkson, Chris S. Miles, Alistair Harding, Nicholas J. O’Reilly, Andrias O. Weetman, David Kwiatkowski, Dominic Donnelly, Martin J. |
author_sort | Clarkson, Chris S. |
collection | PubMed |
description | Resistance to pyrethroid insecticides is a major concern for malaria vector control. Pyrethroids target the voltage‐gated sodium channel (VGSC), an essential component of the mosquito nervous system. Substitutions in the amino acid sequence can induce a resistance phenotype. We use whole‐genome sequence data from phase 2 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) to provide a comprehensive account of genetic variation in the Vgsc gene across 13 African countries. In addition to known resistance alleles, we describe 20 other non‐synonymous nucleotide substitutions at appreciable population frequency and map these variants onto a protein model to investigate the likelihood of pyrethroid resistance phenotypes. Thirteen of these novel alleles were found to occur almost exclusively on haplotypes carrying the known L995F kdr (knock‐down resistance) allele and may enhance or compensate for the L995F resistance genotype. A novel mutation I1527T, adjacent to a predicted pyrethroid‐binding site, was found in tight linkage with V402L substitutions, similar to allele combinations associated with resistance in other insect species. We also analysed genetic backgrounds carrying resistance alleles, to determine which alleles have experienced recent positive selection, and describe ten distinct haplotype groups carrying known kdr alleles. Five of these groups are observed in more than one country, in one case separated by over 3000 km, providing new information about the potential for the geographical spread of resistance. Our results demonstrate that the molecular basis of target‐site pyrethroid resistance in malaria vectors is more complex than previously appreciated, and provide a foundation for the development of new genetic tools for insecticide resistance management. |
format | Online Article Text |
id | pubmed-9019111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90191112022-04-20 The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii Clarkson, Chris S. Miles, Alistair Harding, Nicholas J. O’Reilly, Andrias O. Weetman, David Kwiatkowski, Dominic Donnelly, Martin J. Mol Ecol Special Feature: Resistance Evolution, from Genetic Mechanism to Ecological Context Resistance to pyrethroid insecticides is a major concern for malaria vector control. Pyrethroids target the voltage‐gated sodium channel (VGSC), an essential component of the mosquito nervous system. Substitutions in the amino acid sequence can induce a resistance phenotype. We use whole‐genome sequence data from phase 2 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) to provide a comprehensive account of genetic variation in the Vgsc gene across 13 African countries. In addition to known resistance alleles, we describe 20 other non‐synonymous nucleotide substitutions at appreciable population frequency and map these variants onto a protein model to investigate the likelihood of pyrethroid resistance phenotypes. Thirteen of these novel alleles were found to occur almost exclusively on haplotypes carrying the known L995F kdr (knock‐down resistance) allele and may enhance or compensate for the L995F resistance genotype. A novel mutation I1527T, adjacent to a predicted pyrethroid‐binding site, was found in tight linkage with V402L substitutions, similar to allele combinations associated with resistance in other insect species. We also analysed genetic backgrounds carrying resistance alleles, to determine which alleles have experienced recent positive selection, and describe ten distinct haplotype groups carrying known kdr alleles. Five of these groups are observed in more than one country, in one case separated by over 3000 km, providing new information about the potential for the geographical spread of resistance. Our results demonstrate that the molecular basis of target‐site pyrethroid resistance in malaria vectors is more complex than previously appreciated, and provide a foundation for the development of new genetic tools for insecticide resistance management. John Wiley and Sons Inc. 2021-03-08 2021-11 /pmc/articles/PMC9019111/ /pubmed/33590926 http://dx.doi.org/10.1111/mec.15845 Text en © 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Special Feature: Resistance Evolution, from Genetic Mechanism to Ecological Context Clarkson, Chris S. Miles, Alistair Harding, Nicholas J. O’Reilly, Andrias O. Weetman, David Kwiatkowski, Dominic Donnelly, Martin J. The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii |
title | The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
|
title_full | The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
|
title_fullStr | The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
|
title_full_unstemmed | The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
|
title_short | The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii
|
title_sort | genetic architecture of target‐site resistance to pyrethroid insecticides in the african malaria vectors anopheles gambiae and anopheles coluzzii |
topic | Special Feature: Resistance Evolution, from Genetic Mechanism to Ecological Context |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019111/ https://www.ncbi.nlm.nih.gov/pubmed/33590926 http://dx.doi.org/10.1111/mec.15845 |
work_keys_str_mv | AT clarksonchriss thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT milesalistair thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT hardingnicholasj thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT oreillyandriaso thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT weetmandavid thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT kwiatkowskidominic thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT donnellymartinj thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT thegeneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT clarksonchriss geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT milesalistair geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT hardingnicholasj geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT oreillyandriaso geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT weetmandavid geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT kwiatkowskidominic geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT donnellymartinj geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii AT geneticarchitectureoftargetsiteresistancetopyrethroidinsecticidesintheafricanmalariavectorsanophelesgambiaeandanophelescoluzzii |