Cargando…
HINT: Hierarchical interaction network for clinical-trial-outcome predictions
Clinical trials are crucial for drug development but often face uncertain outcomes due to safety, efficacy, or patient-recruitment problems. We propose the Hierarchical Interaction Network (HINT) to predict clinical trial outcomes. First, HINT encodes multi-modal data (drug molecule, target disease,...
Autores principales: | Fu, Tianfan, Huang, Kexin, Xiao, Cao, Glass, Lucas M., Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024011/ https://www.ncbi.nlm.nih.gov/pubmed/35465223 http://dx.doi.org/10.1016/j.patter.2022.100445 |
Ejemplares similares
-
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
SkipGNN: predicting molecular interactions with skip-graph networks
por: Huang, Kexin, et al.
Publicado: (2020) -
MolTrans: Molecular Interaction Transformer for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative
Model for Molecule Optimization
por: Fu, Tianfan, et al.
Publicado: (2022) -
SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization
por: Yu, Yue, et al.
Publicado: (2021)