Cargando…
Reflow Soldering Capability Improvement by Utilizing TaN Interfacial Layer in 1Mbit RRAM Chip
We investigated the thermal stability of a 1Mbit OxRRAM array embedded in 28 nm COMS technology. A back-end-of-line (BEOL) solution with a TaN–Ta interfacial layer was proposed to eliminate the failure rate after reflow soldering assembly at 260 °C. By utilizing a TaN–Ta interfacial layer (IL), the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025100/ https://www.ncbi.nlm.nih.gov/pubmed/35457872 http://dx.doi.org/10.3390/mi13040567 |
Sumario: | We investigated the thermal stability of a 1Mbit OxRRAM array embedded in 28 nm COMS technology. A back-end-of-line (BEOL) solution with a TaN–Ta interfacial layer was proposed to eliminate the failure rate after reflow soldering assembly at 260 °C. By utilizing a TaN–Ta interfacial layer (IL), the oxygen defects in conductive filament were redistributed, and electromigration lifetimes of Cu-based damascene interconnects were improved, which contributed to optimization. This work provides a potential solution for the practical application of embedded RRAM beyond the 28 nm technology node. |
---|