Cargando…
InsuLock: A Weakly Supervised Learning Approach for Accurate Insulator Prediction, and Variant Impact Quantification
Mapping chromatin insulator loops is crucial to investigating genome evolution, elucidating critical biological functions, and ultimately quantifying variant impact in diseases. However, chromatin conformation profiling assays are usually expensive, time-consuming, and may report fuzzy insulator ann...
Autores principales: | Srinivasan, Shushrruth Sai, Gong, Yanwen, Xu, Siwei, Hwang, Ahyeon, Xu, Min, Girgenti, Matthew J., Zhang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026820/ https://www.ncbi.nlm.nih.gov/pubmed/35456427 http://dx.doi.org/10.3390/genes13040621 |
Ejemplares similares
-
scEpiLock: A Weakly Supervised Learning Framework for cis-Regulatory Element Localization and Variant Impact Quantification for Single-Cell Epigenetic Data
por: Gong, Yanwen, et al.
Publicado: (2022) -
InsuTAG: A novel physiologically relevant predictor for insulin resistance and metabolic syndrome
por: Thota, Rohith N., et al.
Publicado: (2017) -
Accurate somatic variant detection using weakly supervised deep learning
por: Krishnamachari, Kiran, et al.
Publicado: (2022) -
Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks
por: Chen, Siwei, et al.
Publicado: (2022) -
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning
por: Laubscher, Emily, et al.
Publicado: (2023)