Cargando…
Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CF...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027586/ https://www.ncbi.nlm.nih.gov/pubmed/35455747 http://dx.doi.org/10.3390/jpm12040632 |
_version_ | 1784691403028168704 |
---|---|
author | Ciciriello, Fabiana Bijvelds, Marcel J. C. Alghisi, Federico Meijsen, Kelly F. Cristiani, Luca Sorio, Claudio Melotti, Paola Fiocchi, Alessandro G. Lucidi, Vincenzina De Jonge, Hugo R. |
author_facet | Ciciriello, Fabiana Bijvelds, Marcel J. C. Alghisi, Federico Meijsen, Kelly F. Cristiani, Luca Sorio, Claudio Melotti, Paola Fiocchi, Alessandro G. Lucidi, Vincenzina De Jonge, Hugo R. |
author_sort | Ciciriello, Fabiana |
collection | PubMed |
description | Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl(−) and HCO(3)(−) secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl(−) and HCO(3)(−) transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations. |
format | Online Article Text |
id | pubmed-9027586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90275862022-04-23 Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers Ciciriello, Fabiana Bijvelds, Marcel J. C. Alghisi, Federico Meijsen, Kelly F. Cristiani, Luca Sorio, Claudio Melotti, Paola Fiocchi, Alessandro G. Lucidi, Vincenzina De Jonge, Hugo R. J Pers Med Article Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl(−) and HCO(3)(−) secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl(−) and HCO(3)(−) transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations. MDPI 2022-04-14 /pmc/articles/PMC9027586/ /pubmed/35455747 http://dx.doi.org/10.3390/jpm12040632 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ciciriello, Fabiana Bijvelds, Marcel J. C. Alghisi, Federico Meijsen, Kelly F. Cristiani, Luca Sorio, Claudio Melotti, Paola Fiocchi, Alessandro G. Lucidi, Vincenzina De Jonge, Hugo R. Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title | Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title_full | Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title_fullStr | Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title_full_unstemmed | Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title_short | Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers |
title_sort | theratyping of the rare cftr variants e193k and r334w in rectal organoid-derived epithelial monolayers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027586/ https://www.ncbi.nlm.nih.gov/pubmed/35455747 http://dx.doi.org/10.3390/jpm12040632 |
work_keys_str_mv | AT ciciriellofabiana theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT bijveldsmarceljc theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT alghisifederico theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT meijsenkellyf theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT cristianiluca theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT sorioclaudio theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT melottipaola theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT fiocchialessandrog theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT lucidivincenzina theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers AT dejongehugor theratypingoftherarecftrvariantse193kandr334winrectalorganoidderivedepithelialmonolayers |