Cargando…

Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module

In general, one may have access to a handful of labeled normal and defect datasets. Most unlabeled datasets contain normal samples because the defect samples occurred rarely. Thus, the majority of approaches for anomaly detection are formed as unsupervised problems. Most of the previous methods have...

Descripción completa

Detalles Bibliográficos
Autores principales: Sae-ang, Bee-ing, Kumwilaisak, Wuttipong, Kaewtrakulpong, Pakorn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030561/
https://www.ncbi.nlm.nih.gov/pubmed/35458900
http://dx.doi.org/10.3390/s22082915