Cargando…

Sparse dictionary learning recovers pleiotropy from human cell fitness screens

In high-throughput functional genomic screens, each gene product is commonly assumed to exhibit a singular biological function within a defined protein complex or pathway. In practice, a single gene perturbation may induce multiple cascading functional outcomes, a genetic principle known as pleiotro...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Joshua, Kwon, Jason J., Talamas, Jessica A., Borah, Ashir A., Vazquez, Francisca, Boehm, Jesse S., Tsherniak, Aviad, Zitnik, Marinka, McFarland, James M., Hahn, William C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035054/
https://www.ncbi.nlm.nih.gov/pubmed/35085500
http://dx.doi.org/10.1016/j.cels.2021.12.005
_version_ 1784693228940820480
author Pan, Joshua
Kwon, Jason J.
Talamas, Jessica A.
Borah, Ashir A.
Vazquez, Francisca
Boehm, Jesse S.
Tsherniak, Aviad
Zitnik, Marinka
McFarland, James M.
Hahn, William C.
author_facet Pan, Joshua
Kwon, Jason J.
Talamas, Jessica A.
Borah, Ashir A.
Vazquez, Francisca
Boehm, Jesse S.
Tsherniak, Aviad
Zitnik, Marinka
McFarland, James M.
Hahn, William C.
author_sort Pan, Joshua
collection PubMed
description In high-throughput functional genomic screens, each gene product is commonly assumed to exhibit a singular biological function within a defined protein complex or pathway. In practice, a single gene perturbation may induce multiple cascading functional outcomes, a genetic principle known as pleiotropy. Here, we model pleiotropy in fitness screen collections by representing each gene perturbation as the sum of multiple perturbations of biological functions, each harboring independent fitness effects inferred empirically from the data. Our approach (Webster) recovered pleiotropic functions for DNA damage proteins from genotoxic fitness screens, untangled distinct signaling pathways upstream of shared effector proteins from cancer cell fitness screens, and predicted the stoichiometry of an unknown protein complex subunit from fitness data alone. Modeling compound sensitivity profiles in terms of genetic functions recovered compound mechanisms of action. Our approach establishes a sparse approximation mechanism for unraveling complex genetic architectures underlying high-dimensional gene perturbation readouts.
format Online
Article
Text
id pubmed-9035054
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-90350542022-04-24 Sparse dictionary learning recovers pleiotropy from human cell fitness screens Pan, Joshua Kwon, Jason J. Talamas, Jessica A. Borah, Ashir A. Vazquez, Francisca Boehm, Jesse S. Tsherniak, Aviad Zitnik, Marinka McFarland, James M. Hahn, William C. Cell Syst Article In high-throughput functional genomic screens, each gene product is commonly assumed to exhibit a singular biological function within a defined protein complex or pathway. In practice, a single gene perturbation may induce multiple cascading functional outcomes, a genetic principle known as pleiotropy. Here, we model pleiotropy in fitness screen collections by representing each gene perturbation as the sum of multiple perturbations of biological functions, each harboring independent fitness effects inferred empirically from the data. Our approach (Webster) recovered pleiotropic functions for DNA damage proteins from genotoxic fitness screens, untangled distinct signaling pathways upstream of shared effector proteins from cancer cell fitness screens, and predicted the stoichiometry of an unknown protein complex subunit from fitness data alone. Modeling compound sensitivity profiles in terms of genetic functions recovered compound mechanisms of action. Our approach establishes a sparse approximation mechanism for unraveling complex genetic architectures underlying high-dimensional gene perturbation readouts. 2022-04-20 2022-01-31 /pmc/articles/PMC9035054/ /pubmed/35085500 http://dx.doi.org/10.1016/j.cels.2021.12.005 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Pan, Joshua
Kwon, Jason J.
Talamas, Jessica A.
Borah, Ashir A.
Vazquez, Francisca
Boehm, Jesse S.
Tsherniak, Aviad
Zitnik, Marinka
McFarland, James M.
Hahn, William C.
Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title_full Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title_fullStr Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title_full_unstemmed Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title_short Sparse dictionary learning recovers pleiotropy from human cell fitness screens
title_sort sparse dictionary learning recovers pleiotropy from human cell fitness screens
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035054/
https://www.ncbi.nlm.nih.gov/pubmed/35085500
http://dx.doi.org/10.1016/j.cels.2021.12.005
work_keys_str_mv AT panjoshua sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT kwonjasonj sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT talamasjessicaa sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT borahashira sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT vazquezfrancisca sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT boehmjesses sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT tsherniakaviad sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT zitnikmarinka sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT mcfarlandjamesm sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens
AT hahnwilliamc sparsedictionarylearningrecoverspleiotropyfromhumancellfitnessscreens