Cargando…

CRISPR-Cas9-mediated loss of function of β-catenin attenuates intervertebral disc degeneration

Intervertebral disc degeneration is a very common medical condition causing pain and disability, and it cannot be reversed by available treatment options. Here we report that targeting β-catenin, a pivotal factor associated with disc degeneration, ameliorates disc degeneration in a mouse model of di...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Yunshan, Zhao, Lan, Lai, Yumei, Lu, Ke, Huang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035381/
https://www.ncbi.nlm.nih.gov/pubmed/35505959
http://dx.doi.org/10.1016/j.omtn.2022.03.024
Descripción
Sumario:Intervertebral disc degeneration is a very common medical condition causing pain and disability, and it cannot be reversed by available treatment options. Here we report that targeting β-catenin, a pivotal factor associated with disc degeneration, ameliorates disc degeneration in a mouse model of disc injury. Degenerative changes in the disc in response to disc injury include decompression of nucleus pulposus (NP), replacement of notochordal cells in the NP by chondrocyte-like cells, and disorganization of annulus fibrosus (AF). Importantly, downregulation of β-catenin through intradiscal injection of CRISPR-Cas9-expressing adeno-associated virus significantly mitigated all these pathological changes, by preserving notochordal cells and attenuating chondro-osteogenesis in the NP, as well as maintaining the AF structure. Moreover, β-catenin loss-of-function decelerated the rapid induction of catabolic reactions in disc matrix and attenuated pain-related neural events during disc degeneration. Thus, our data demonstrate that targeting β-catenin in disc cells through CRISPR-Cas9 has multifaceted therapeutic effects on disc degeneration, and we suggest that β-catenin plays a fundamental role in the remodeling and degenerative processes of the disc. In addition, this study proposes that CRISPR-Cas9 is a useful tool for identifying new drug targets and developing therapeutic strategies for disc degeneration.