Cargando…
Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy
Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation wit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036989/ https://www.ncbi.nlm.nih.gov/pubmed/35480981 http://dx.doi.org/10.3389/fbioe.2022.867042 |
_version_ | 1784693633513947136 |
---|---|
author | Bonifacius, Agnes Tischer-Zimmermann, Sabine Santamorena, Maria Michela Mausberg, Philip Schenk, Josephine Koch, Stephanie Barnstorf-Brandes, Johanna Gödecke, Nina Martens, Jörg Goudeva, Lilia Verboom, Murielle Wittig, Jana Maecker-Kolhoff, Britta Baurmann, Herrad Clark, Caren Brauns, Olaf Simon, Martina Lang, Peter Cornely, Oliver A. Hallek, Michael Blasczyk, Rainer Seiferling, Dominic Köhler, Philipp Eiz-Vesper, Britta |
author_facet | Bonifacius, Agnes Tischer-Zimmermann, Sabine Santamorena, Maria Michela Mausberg, Philip Schenk, Josephine Koch, Stephanie Barnstorf-Brandes, Johanna Gödecke, Nina Martens, Jörg Goudeva, Lilia Verboom, Murielle Wittig, Jana Maecker-Kolhoff, Britta Baurmann, Herrad Clark, Caren Brauns, Olaf Simon, Martina Lang, Peter Cornely, Oliver A. Hallek, Michael Blasczyk, Rainer Seiferling, Dominic Köhler, Philipp Eiz-Vesper, Britta |
author_sort | Bonifacius, Agnes |
collection | PubMed |
description | Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3(+) cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease. |
format | Online Article Text |
id | pubmed-9036989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90369892022-04-26 Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy Bonifacius, Agnes Tischer-Zimmermann, Sabine Santamorena, Maria Michela Mausberg, Philip Schenk, Josephine Koch, Stephanie Barnstorf-Brandes, Johanna Gödecke, Nina Martens, Jörg Goudeva, Lilia Verboom, Murielle Wittig, Jana Maecker-Kolhoff, Britta Baurmann, Herrad Clark, Caren Brauns, Olaf Simon, Martina Lang, Peter Cornely, Oliver A. Hallek, Michael Blasczyk, Rainer Seiferling, Dominic Köhler, Philipp Eiz-Vesper, Britta Front Bioeng Biotechnol Bioengineering and Biotechnology Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3(+) cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease. Frontiers Media S.A. 2022-04-04 /pmc/articles/PMC9036989/ /pubmed/35480981 http://dx.doi.org/10.3389/fbioe.2022.867042 Text en Copyright © 2022 Bonifacius, Tischer-Zimmermann, Santamorena, Mausberg, Schenk, Koch, Barnstorf-Brandes, Gödecke, Martens, Goudeva, Verboom, Wittig, Maecker-Kolhoff, Baurmann, Clark, Brauns, Simon, Lang, Cornely, Hallek, Blasczyk, Seiferling, Köhler and Eiz-Vesper. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Bonifacius, Agnes Tischer-Zimmermann, Sabine Santamorena, Maria Michela Mausberg, Philip Schenk, Josephine Koch, Stephanie Barnstorf-Brandes, Johanna Gödecke, Nina Martens, Jörg Goudeva, Lilia Verboom, Murielle Wittig, Jana Maecker-Kolhoff, Britta Baurmann, Herrad Clark, Caren Brauns, Olaf Simon, Martina Lang, Peter Cornely, Oliver A. Hallek, Michael Blasczyk, Rainer Seiferling, Dominic Köhler, Philipp Eiz-Vesper, Britta Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title | Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title_full | Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title_fullStr | Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title_full_unstemmed | Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title_short | Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy |
title_sort | rapid manufacturing of highly cytotoxic clinical-grade sars-cov-2-specific t cell products covering sars-cov-2 and its variants for adoptive t cell therapy |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036989/ https://www.ncbi.nlm.nih.gov/pubmed/35480981 http://dx.doi.org/10.3389/fbioe.2022.867042 |
work_keys_str_mv | AT bonifaciusagnes rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT tischerzimmermannsabine rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT santamorenamariamichela rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT mausbergphilip rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT schenkjosephine rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT kochstephanie rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT barnstorfbrandesjohanna rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT godeckenina rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT martensjorg rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT goudevalilia rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT verboommurielle rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT wittigjana rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT maeckerkolhoffbritta rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT baurmannherrad rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT clarkcaren rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT braunsolaf rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT simonmartina rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT langpeter rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT cornelyolivera rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT hallekmichael rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT blasczykrainer rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT seiferlingdominic rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT kohlerphilipp rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy AT eizvesperbritta rapidmanufacturingofhighlycytotoxicclinicalgradesarscov2specifictcellproductscoveringsarscov2anditsvariantsforadoptivetcelltherapy |