Cargando…
Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells
Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphod...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041563/ https://www.ncbi.nlm.nih.gov/pubmed/35495504 http://dx.doi.org/10.1039/d1ra06247f |
_version_ | 1784694552403116032 |
---|---|
author | Qiu, Meiying Wu, Deyan Huang, Yi-You Huang, Yue Zhou, Qian Tian, Yijing Guo, Lei Gao, Yuqi Luo, Hai-Bin |
author_facet | Qiu, Meiying Wu, Deyan Huang, Yi-You Huang, Yue Zhou, Qian Tian, Yijing Guo, Lei Gao, Yuqi Luo, Hai-Bin |
author_sort | Qiu, Meiying |
collection | PubMed |
description | Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphodiesterase (PDE) families. Herein, we identified probes based on the key amino residues in the ligand binding pocket of PDE5 and catalytic-site-fluorescent probes PCO2001–PCO2003 were well designed and synthesized. Among them, PCO2003 exhibited extraordinary fluorescence properties and the ability to be applied to PDE5 visualization in live cells as well as in pulmonary tissue slices, demonstrating the location and expression level of PDE5 proteins. Overall, the environment-sensitive “turn-on” probe is economical, convenient and rapid for PDE5 imaging, implying that the catalytic-site-fluorescent probe will have a variety of future applications in pathological diagnosis as well as drug screening. |
format | Online Article Text |
id | pubmed-9041563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90415632022-04-28 Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells Qiu, Meiying Wu, Deyan Huang, Yi-You Huang, Yue Zhou, Qian Tian, Yijing Guo, Lei Gao, Yuqi Luo, Hai-Bin RSC Adv Chemistry Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphodiesterase (PDE) families. Herein, we identified probes based on the key amino residues in the ligand binding pocket of PDE5 and catalytic-site-fluorescent probes PCO2001–PCO2003 were well designed and synthesized. Among them, PCO2003 exhibited extraordinary fluorescence properties and the ability to be applied to PDE5 visualization in live cells as well as in pulmonary tissue slices, demonstrating the location and expression level of PDE5 proteins. Overall, the environment-sensitive “turn-on” probe is economical, convenient and rapid for PDE5 imaging, implying that the catalytic-site-fluorescent probe will have a variety of future applications in pathological diagnosis as well as drug screening. The Royal Society of Chemistry 2021-10-04 /pmc/articles/PMC9041563/ /pubmed/35495504 http://dx.doi.org/10.1039/d1ra06247f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Qiu, Meiying Wu, Deyan Huang, Yi-You Huang, Yue Zhou, Qian Tian, Yijing Guo, Lei Gao, Yuqi Luo, Hai-Bin Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title | Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title_full | Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title_fullStr | Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title_full_unstemmed | Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title_short | Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
title_sort | discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041563/ https://www.ncbi.nlm.nih.gov/pubmed/35495504 http://dx.doi.org/10.1039/d1ra06247f |
work_keys_str_mv | AT qiumeiying discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT wudeyan discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT huangyiyou discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT huangyue discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT zhouqian discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT tianyijing discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT guolei discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT gaoyuqi discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells AT luohaibin discoveryofcatalyticsitefluorescentprobesfortracingphosphodiesterase5inlivingcells |