Cargando…

Phenolic water toxins: redox mechanism and method of their detection in water and wastewater

Phenolic pollutants are highly toxic and persistent in the environment. Their efficient detection is a pressing social demand. In this regard we introduce a novel ultrasensitive electroanalytical platform for the individual and synchronized detection of three phenolic isomers commonly known as hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Kokab, Tayyaba, Shah, Afzal, Nisar, Jan, Ashiq, Muhammad Naeem, Khan, M. Abdullah, Khan, Sher Bahadar, Bakhsh, Esraa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043152/
https://www.ncbi.nlm.nih.gov/pubmed/35492751
http://dx.doi.org/10.1039/d1ra05669g
Descripción
Sumario:Phenolic pollutants are highly toxic and persistent in the environment. Their efficient detection is a pressing social demand. In this regard we introduce a novel ultrasensitive electroanalytical platform for the individual and synchronized detection of three phenolic isomers commonly known as hydroquinone (HQ), resorcinol (RC), and catechol (CC). The sensing device consists of a glassy carbon electrode (GCE) modified with functionalized carbon nanotubes (fCNTs) and gold–silver (Au–Ag NPs) bimetallic nanoparticles. The sandwiched scaffold represented as fCNTs/Au–Ag NPs/fCNTs/GCE efficiently senses HQ, RC, and CC with detection limits of 28.6 fM, 36.5 fM and 42.8 fM respectively. The designed sensor is more promising than reported sensors for phenolic toxins in the context of high sensitivity, selectivity, and rapid responsiveness. The designed sensor also shows the qualities of stability, reproducibility, reliability, and selective recognition capacity for target analytes in multiple real water samples. Moreover, computational calculations explain the function of the electrode modifier in facilitating charge transfer between the transducer and analytes.