Cargando…
Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice
From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a J...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043990/ https://www.ncbi.nlm.nih.gov/pubmed/35492247 http://dx.doi.org/10.1016/j.xcrm.2022.100597 |
Sumario: | From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia. |
---|