Cargando…
Self-supervised recurrent depth estimation with attention mechanisms
Depth estimation has been an essential task for many computer vision applications, especially in autonomous driving, where safety is paramount. Depth can be estimated not only with traditional supervised learning but also via a self-supervised approach that relies on camera motion and does not requi...
Autores principales: | Makarov, Ilya, Bakhanova, Maria, Nikolenko, Sergey, Gerasimova, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044223/ https://www.ncbi.nlm.nih.gov/pubmed/35494794 http://dx.doi.org/10.7717/peerj-cs.865 |
Ejemplares similares
-
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
Dual network embedding for representing research interests in the link prediction problem on co-authorship networks
por: Makarov, Ilya, et al.
Publicado: (2019) -
Image classification model based on large kernel attention mechanism and relative position self-attention mechanism
por: Liu, Siqi, et al.
Publicado: (2023) -
eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
por: Ngo, Duc Tuan, et al.
Publicado: (2022) -
Fusion of text and graph information for machine learning problems on networks
por: Makarov, Ilya, et al.
Publicado: (2021)