Cargando…

Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly

Parkinson’s disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Jemil, Fitch, Tessa C., Donnelly, Courtney M., Joseph, Johnson A., Ball, Tyler D., Bassil, Mikaela M., Son, Ahyun, Zhang, Chen, Ledreux, Aurélie, Horowitz, Scott, Qin, Yan, Paredes, Daniel, Kumar, Sunil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046208/
https://www.ncbi.nlm.nih.gov/pubmed/35477706
http://dx.doi.org/10.1038/s41467-022-29724-4
Descripción
Sumario:Parkinson’s disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays is utilized to validate αS sequences and their structural characteristics that are essential for aggregation and propagation of PD phenotypes. The study aids in developing significant mechanistic and therapeutic insights into various facets of αS aggregation, which will pave the way for effective treatments for PD.