Cargando…

Double emulsions as delivery systems for iron: Stability kinetics and improved bioaccessibility in infants and adults

Iron deficiency is one of the main causes of anemia in the world, especially in children and women, so food fortification through microencapsulation is a viable alternative to combat this deficiency. The present work aimed to encapsulate iron in a water-in-oil-in-water double emulsion (W(1)/O/W(2)),...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbosa, Bruno Sérgio Toledo, Garcia-Rojas, Edwin Elard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046948/
https://www.ncbi.nlm.nih.gov/pubmed/35497774
http://dx.doi.org/10.1016/j.crfs.2022.04.003
Descripción
Sumario:Iron deficiency is one of the main causes of anemia in the world, especially in children and women, so food fortification through microencapsulation is a viable alternative to combat this deficiency. The present work aimed to encapsulate iron in a water-in-oil-in-water double emulsion (W(1)/O/W(2)), which was formed with whey protein isolate and polyglycerol polyricinoleate as the emulsifying agents, tara gum as a thickening agent, and sucrose as an osmotic active substance. The double emulsion formed with 12% whey protein isolate, 0.8% tara gum, and 2% sucrose presented high encapsulation efficiency (96.95 ± 1.00%) and good stability (up to 7 days). Additionally, after the in vitro gastrointestinal simulations, the bioaccessibility was high for adults (49.54 ± 5.50%) and infants (39.71 ± 2.33%). Finally, the study show that double emulsions can form stable systems with high iron bioaccessibility even in infant gastric systems, which indicates the possibility of using double emulsions to fortify food with iron.