Cargando…
A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide
Tadalafil and repaglinide, categorized as BCS class II drugs, have low oral bioavailabilities due to their poorly aqueous solubilities and dissolutions. The aim of this study was to enhance the dissolution of tadalafil and repaglinide by co-amorphization technology and evaluate the storage and compr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048229/ https://www.ncbi.nlm.nih.gov/pubmed/35492562 http://dx.doi.org/10.1039/c9ra07149k |
_version_ | 1784695889063837696 |
---|---|
author | Su, Meiling Xia, Yanming Shen, Yajing Heng, Weili Wei, Yuanfeng Zhang, Linghe Gao, Yuan Zhang, Jianjun Qian, Shuai |
author_facet | Su, Meiling Xia, Yanming Shen, Yajing Heng, Weili Wei, Yuanfeng Zhang, Linghe Gao, Yuan Zhang, Jianjun Qian, Shuai |
author_sort | Su, Meiling |
collection | PubMed |
description | Tadalafil and repaglinide, categorized as BCS class II drugs, have low oral bioavailabilities due to their poorly aqueous solubilities and dissolutions. The aim of this study was to enhance the dissolution of tadalafil and repaglinide by co-amorphization technology and evaluate the storage and compression stability of such coamorphous system. Based on Flory–Huggins interaction parameter (χ ≤ 0) and Hansen solubility parameter (δ(t) ≤ 7 MPa(0.5)) calculations, tadalafil and repaglinide was predicted to be well miscible with each other. Coamorphous tadalafil–repaglinide (molar ratio, 1 : 1) was prepared by solvent-evaporation method and characterized with respect to its thermal properties, possible molecular interactions. A single T(g) (73.1 °C) observed in DSC and disappearance of crystallinity in PXRD indicated the formation of coamorphous system. Principal component analysis of FTIR in combination with Raman spectroscopy and Ss (13)C NMR suggested the absence of intermolecular interactions in coamorphous tadalafil–repaglinide. In comparison to pure crystalline forms and their physical mixtures, both drugs in coamorphous system exhibited significant increases in intrinsic dissolution rate (1.5–3-fold) and could maintain supersaturated level for at least 4 hours in non-sink dissolution. In addition, the coamorphous tadalafil–repaglinide showed improved stability compared to the pure amorphous forms under long-term stability and accelerated storage conditions as well as under high compressing pressure. In conclusion, this study showed that co-amorphization technique is a promising approach for improving the dissolution rate of poorly water-soluble drugs and for stabilizing amorphous drugs. |
format | Online Article Text |
id | pubmed-9048229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90482292022-04-28 A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide Su, Meiling Xia, Yanming Shen, Yajing Heng, Weili Wei, Yuanfeng Zhang, Linghe Gao, Yuan Zhang, Jianjun Qian, Shuai RSC Adv Chemistry Tadalafil and repaglinide, categorized as BCS class II drugs, have low oral bioavailabilities due to their poorly aqueous solubilities and dissolutions. The aim of this study was to enhance the dissolution of tadalafil and repaglinide by co-amorphization technology and evaluate the storage and compression stability of such coamorphous system. Based on Flory–Huggins interaction parameter (χ ≤ 0) and Hansen solubility parameter (δ(t) ≤ 7 MPa(0.5)) calculations, tadalafil and repaglinide was predicted to be well miscible with each other. Coamorphous tadalafil–repaglinide (molar ratio, 1 : 1) was prepared by solvent-evaporation method and characterized with respect to its thermal properties, possible molecular interactions. A single T(g) (73.1 °C) observed in DSC and disappearance of crystallinity in PXRD indicated the formation of coamorphous system. Principal component analysis of FTIR in combination with Raman spectroscopy and Ss (13)C NMR suggested the absence of intermolecular interactions in coamorphous tadalafil–repaglinide. In comparison to pure crystalline forms and their physical mixtures, both drugs in coamorphous system exhibited significant increases in intrinsic dissolution rate (1.5–3-fold) and could maintain supersaturated level for at least 4 hours in non-sink dissolution. In addition, the coamorphous tadalafil–repaglinide showed improved stability compared to the pure amorphous forms under long-term stability and accelerated storage conditions as well as under high compressing pressure. In conclusion, this study showed that co-amorphization technique is a promising approach for improving the dissolution rate of poorly water-soluble drugs and for stabilizing amorphous drugs. The Royal Society of Chemistry 2020-01-02 /pmc/articles/PMC9048229/ /pubmed/35492562 http://dx.doi.org/10.1039/c9ra07149k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Su, Meiling Xia, Yanming Shen, Yajing Heng, Weili Wei, Yuanfeng Zhang, Linghe Gao, Yuan Zhang, Jianjun Qian, Shuai A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title | A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title_full | A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title_fullStr | A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title_full_unstemmed | A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title_short | A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
title_sort | novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048229/ https://www.ncbi.nlm.nih.gov/pubmed/35492562 http://dx.doi.org/10.1039/c9ra07149k |
work_keys_str_mv | AT sumeiling anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT xiayanming anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT shenyajing anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT hengweili anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT weiyuanfeng anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT zhanglinghe anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT gaoyuan anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT zhangjianjun anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT qianshuai anoveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT sumeiling noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT xiayanming noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT shenyajing noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT hengweili noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT weiyuanfeng noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT zhanglinghe noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT gaoyuan noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT zhangjianjun noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide AT qianshuai noveldrugdrugcoamorphoussystemwithoutmolecularinteractionsimprovethephysicochemicalpropertiesoftadalafilandrepaglinide |